首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
化学   1篇
物理学   13篇
  2013年   1篇
  2011年   3篇
  2008年   3篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2000年   1篇
  1997年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Using exact diagonalization, Monte-Carlo, and mean-field techniques, characteristic temperature scales for ferromagnetic order are discussed for the Ising and the classical anisotropic Heisenberg model on finite lattices in one and two dimensions. The interplay between nearest-neighbor exchange, anisotropy and the presence of surfaces leads, as a function of temperature, to a complex behavior of the distance-dependent spin-spin correlation function, which is very different from what is commonly expected. A finite experimental observation time is considered in addition, which is simulated within the Monte-Carlo approach by an incomplete statistical average. We find strong surface effects for small nanoparticles, which cannot be explained within a simple Landau or mean-field concept and which give rise to characteristic trends of the spin-correlation function in different temperature regimes. Unambiguous definitions of crossover temperatures for finite systems and an effective method to estimate the critical temperature of corresponding infinite systems are given.  相似文献   
2.
Based on Monte Carlo simulations, the stable magnetization configurations of an antiferromagnet on a quasiperiodic tiling are derived theoretically. The exchange coupling is assumed to decrease exponentially with the distance between magnetic moments. It is demonstrated that the superposition of geometric frustration with the quasiperiodic ordering leads to a three-dimensional noncollinear antiferromagnetic spin structure. The structure can be divided into several ordered interpenetrating magnetic supertilings of different energy and characteristic wave vector. The number and the symmetry of subtilings depend on the quasiperiodic ordering of atoms.  相似文献   
3.
We have observed a novel magnetic structure in the pseudomorphic Fe monolayer on Ir(111). Using spin-polarized scanning tunneling microscopy we find a nanometer-sized two-dimensional magnetic unit cell. A collinear magnetic structure is proposed consisting of 15 Fe atoms per unit cell with 7 magnetic moments pointing in one and 8 moments in the opposite direction. First-principles calculations verify that such an unusual magnetic state is indeed lower in energy than all solutions of the classical Heisenberg model. We demonstrate that the complex magnetic structure is induced by the strong Fe-Ir hybridization.  相似文献   
4.
5.
The stable magnetization configurations of a ferromagnet on a quasiperiodic tiling have been derived theoretically. The magnetization configuration is investigated as a function of the ratio of the exchange to the dipolar energy. The exchange coupling is assumed to decrease exponentially with the distance between magnetic moments. It is demonstrated that for a weak exchange interaction the new structure, the quasiferromagnetic decagonal configuration, corresponds to the minimum of the free energy. The decagonal state represents a new class of frustrated systems where the degenerated ground state is aperiodic and consists of two parts: ordered decagon rings and disordered spin-glass-like phase inside the decagons.  相似文献   
6.
The low-temperature stable states and the magnetization reversal of realistic two-dimensional nanoarrays with higher-order magnetostatic interactions are studied theoretically. For a general calculus of the multipole-multipole interaction energy we introduce a Hamiltonian in spherical coordinates into the Monte Carlo scheme. We demonstrate that higher-order interactions considerably change the dipolar ground states of in-plane magnetized arrays favoring collinear configurations. The multipolar interactions lead to enhancement or decrease of the coercivity in arrays with in-plane or out-of-plane magnetization.  相似文献   
7.
A theoretical concept of local manipulation of magnetic domain walls is introduced. In the proposed procedure, a domain wall is driven by a spin-polarized current induced by a magnetic tip, as used in a scanning tunneling microscope, placed above a magnetic nanostripe and then moved along its long axis with a current flowing through the vacuum barrier. The angular momentum from the spin-polarized current exerts a torque on the magnetic moments underneath the tip and leads to a displacement of the domain wall. Particularly, the manipulation of a ferromagnetic 180° transverse domain wall has been studied by means of Landau-Lifshitz-Gilbert dynamics and Monte Carlo simulations. Different relative orientations of the tip and the sample magnetization have been considered.  相似文献   
8.
The indirect controlled displacement of an antiferromagnetic domain wall by a spin current is studied by Landau-Lifshitz-Gilbert spin dynamics. The antiferromagnetic domain wall can be shifted both by a spin-polarized tunnel current of a scanning tunneling microscope or by a current driven ferromagnetic domain wall in an exchange coupled antiferromagnetic-ferromagnetic layer system. The indirect control of antiferromagnetic domain walls opens up a new and promising direction for future spin device applications based on antiferromagnetic materials.  相似文献   
9.
Using spin-polarized scanning tunneling microscopy we show that the magnetic order of 1 monolayer Mn on W(001) is a spin spiral propagating along 110 crystallographic directions. The spiral arises on the atomic scale with a period of about 2.2 nm, equivalent to only 10 atomic rows. Ab initio calculations identify the spin spiral as a left-handed cycloid stabilized by the Dzyaloshinskii-Moriya interaction, imposed by spin-orbit coupling, in the presence of softened ferromagnetic exchange coupling. Monte Carlo simulations explain the formation of a nanoscale labyrinth pattern, originating from the coexistence of the two possible rotational domains, that is intrinsic to the system.  相似文献   
10.
Scanning tunneling microscopy reveals that domain walls in ultrathin Fe nanowires are oriented along a certain crystallographic direction, regardless of the orientation of the wires. Monte Carlo simulations on a discrete lattice are in accordance with the experiment if the film relaxation is taken into account. We demonstrate that the wall orientation is determined by the atomic lattice and the resulting strength of an effective exchange interaction. The magnetic anisotropy and the magnetostatic energy play a minor role for the wall orientation in that system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号