首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   1篇
化学   4篇
数学   2篇
物理学   22篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2013年   5篇
  2011年   3篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1994年   1篇
  1985年   1篇
排序方式: 共有28条查询结果,搜索用时 62 毫秒
1.
2.
The volume of glassy a-SiO2 upon compression to 9 GPa was measured in situ at high temperatures up to 730 K and at both pressure buildup and release. It was established that the residual densification of a-SiO2 glass after high-pressure treatment was due to the irreversible transformation accompanied by a small change in volume directly under pressure. The bulk modulus of the new amorphous modification was appreciably higher (80% more than its original value), giving rise to residual densification as high as 18% under normal conditions. It was shown that the transformation pressure shifted to a lower pressure of about 4 GPa with a rise in temperature. A conclusion was drawn about the existence of at least two pressure-induced phase transitions accompanied by structure rearrangement in a-SiO2. A nonequilibrium phase diagram is suggested for glassy SiO2. It accounts for all the presently available experimental data and is confirmed by the existing modeling data.  相似文献   
3.
The results of precision measurements of the resistivity, thermopower, volume, and thermal conductivity of the compound SmTe under truly hydrostatic pressure conditions at room temperature are reported. High quality stoichiometric and doped (n-type, n ≈ 8 × 1018 cm?3) single crystals are studied. It is found that the valence transition occurs as consecutive stages of rearrangement of the electron subsystem and the crystal lattice, which take place under different pressures. At the initial stage of the transition, metallization is observed, which is accompanied by anomalies in kinetic coefficients; the curve describing the pressure dependence of the volume deviates from the curve corresponding to the initial semiconductor phase only slightly. The next stage is accompanied by a substantial change in the sample volume (lattice collapse); in this pressure range, however, the resistivity and thermopower become independent of pressure. At the final stage of the transition, the sample compressibility decreases; the resistivity and thermopower become again functions of pressure; and a state emerging in the sample in this case corresponds to the “golden” phase of SmS in all the properties being measured.  相似文献   
4.
We present the molecular dynamics study of benzene molecules confined into the single wall carbon nanotube. The local structure and orientational ordering of benzene molecules are investigated. It is found that the molecules mostly group in the middle distance from the axis of the tube to the wall. The molecules located in the vicinity of the wall demonstrate some deviation from planar shape. There is a tilted orientational ordering of the molecules which depends on the location of the molecule. It is shown that the diffusion coefficient of the benzene molecules is very small at the conditions we report here. © 2015 Wiley Periodicals, Inc.  相似文献   
5.
In the present article we carry out a molecular dynamics study of the core-softened system and show that the existence of the water-like anomalies in this system depends on the trajectory in P-ρ-T space along which the behavior of the system is studied. For example, diffusion and structural anomalies are visible along isotherms as a function of density, but disappears along the isochores and isobars as a function of temperature. On the other hand, the diffusion anomaly may be seen along adiabats as a function of temperature, density, and pressure. It should be noted that it may be no signature of a particular anomaly along a particular trajectory, but the anomalous region for that particular anomaly can be defined when all possible trajectories in the same space are examined (for example, signature of diffusion anomaly is evident through the crossing of different isochors. However, there is no signature of diffusion anomaly along a particular isochor). We also analyze the applicability of the Rosenfeld entropy scaling relations to this system in the regions with the water-like anomalies. It is shown that the validity of the Rosenfeld scaling relation for the diffusion coefficient also depends on the trajectory in the P-ρ-T space along which the kinetic coefficients and the excess entropy are calculated.  相似文献   
6.
High-precision studies of the volume and the electrical resistivity of g-As2Te3 glasses at a high hydrostatic pressure up to 8.5 GPa at room temperature are performed. The glasses exhibit elastic behavior in compression only at a pressure up to 1 GPa, and a diffuse structural transformation and inelastic density relaxation (logarithmic in time) begin at higher pressures. When the pressure increases further, the relaxation rate passes through a sharp maximum at 2.5 GPa, which is accompanied by softening the relaxing bulk modulus, and then decreases, being noticeable up to the maximum pressure. When pressure is relieved, an unusual inflection point is observed in the baric dependence of the bulk modulus near 4 GPa. The polyamorphic transformation is only partly reversible and the residual densification after pressure release is 2%. In compression, the electrical resistivity of the g-As2Te3 glasses decreases exponentially with increasing pressure (at a pressure up to 2 GPa); then, it decreases faster by almost three orders of magnitude in the pressure range 2–3.5 GPa. At a pressure of 5 GPa, the electrical resistivity reaches 10–3 Ω cm, which is characteristic of a metallic state; this resistivity continues to decrease with increasing pressure and reaches 1.7 × 10–4 Ω cm at 8.1 GPa. The reverse metal–semiconductor transition occurs at a pressure of 3 GPa when pressure is relieved. When the pressure is decreased to atmospheric pressure, the electrical resistivity of the glasses is below the initial pressure by two–three orders of magnitude. Under normal conditions, both the volume and the electrical resistivity relax to quasi-equilibrium values in several months. Comparative structural and Raman spectroscopy investigations demonstrate that the glasses subjected to high pressure have the maximum chemical order. The glasses with a higher order have a lower electrical resistivity. The polyamorphism in the As2Te3 glasses is caused by both structural changes and chemical ordering. The g-As2Te3 compound is the first example of glasses, where the reversible metallization under pressure has been studied under hydrostatic conditions.  相似文献   
7.
8.
The representation of the Widom line as a line of maximums of the correlation length and a whole set of thermodynamic response functions above the critical point were introduced to describe anomalies observed in water above the hypothetical critical point of the liquid-liquid transition. The supercritical region for the gas-liquid transition was also described later in terms of the Widom line. It is natural to assume that an analogue of the Widom line also exists in the supercritical region for the first-order isostructural transition in crystals, which ends at a critical point. We use a simple semiphenomenological model, close in spirit the van der Waals theory, to study the properties of the new Widom line. We calculate the thermodynamic response functions above the critical point of the isostructural transition and find their maximums determining the Widom line position.  相似文献   
9.
The kinetics of room-temperature phase transition in fluorite (CaF2) single crystals under hydrostatic pressure up to 9 GPa was studied in situ by means of strain gauge compressibility measurements. Initial stages of the pressure-induced first-order phase transition kinetics (corresponding to less than 1% content of the new phase) were studied for the first time. In a broad range of concentrations of the new phase (5–20%), the transformation kinetics is well described within the framework of the classical Kolmogorov-Avrami-Mehl-Johnson model. The laws governing the initial and late stages of the transformation are more complicated and do not conform to the classical model. The initial stages involve avalanche growth in the nucleation rate corresponding to giant values of the Avrami exponent (n ≈ 20). At large concentrations of the new phase (above 30%), the transformation rate significantly decreases (saturation) as a result of the formation of a rigid cellular structure of the new phase.  相似文献   
10.
We report a detailed simulation study of the phase behavior of core-softened system with attractive well. Different repulsive shoulder widths and attractive well depths are considered which allows to monitor the influence of repulsive and attractive forces on the phase diagram of the system. Thermodynamic anomalies in the systems are also studied. It is shown that the diffusion anomaly is stabilized by small attraction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号