首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
化学   8篇
物理学   3篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2006年   1篇
  2002年   1篇
  1976年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
The present study investigates the effect of hybrid fillers such as graphene nanoplatelets (GnPs) and Titanium di-oxide (TiO2) in polypropylene (PP) composites on the mechanical properties. The compatibilizing agent of Maleic anhydride grafted polypropylene (MAPP) are used in the polypropylene based composites to increase the interfacial adhesion between matrix and fillers. The experiments are designed according to L16 orthogonal array (OA) based design of experiments (DOE). The parameters selected for this study are GnPs, TiO2 and MAPP with four different levels are used.By using Orthogonal array and Taguchi based experimental design, the performance characteristics of tensile modulus, tensile strength, elongation at break and toughness can be analyzed with more objective through a small set of experiments.Taguchi based analysis are used to find out the optimal parameters to maximize the tensile properties for the GnPs and TiO2 reinforced PP hybrid composites. Further, analysis of variance (ANOVA) is investigated to identify the most significant parameters which influence the mechanical properties.From the analysis it was found that the optimal parameters of 3 ?wt% GnPs, 2 ?wt% TiO2 and 6 ?wt% MAPP for maximum tensile modulus and tensile strength. The most significant parameter for tensile modulus and tensile strength is GnPs followed by TiO2 and MAPP according to ANOVA analysis.  相似文献   
2.
A plasma co-polymerization of ethylene as a “chain extending” monomer and allyl alcohol as a carrier monomer for hydroxyl groups was studied. The composition of the feed gas was systematically varied and the plasma co-polymers were analyzed in terms of their relative concentrations of OH functional groups by static Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) immediately after their preparation without any air contact, i.e., under so called “in situ” conditions.The relative OH group concentration involved in the -CH2-OH groups was derived from the normalized yields of the CH3O+ secondary fragment ion. The density of functional groups in the plasma co-polymers was found to vary non-linearly with respect to the mole percentage of the monomers in the feed gas.Co-polymerization phenomena, i.e. chemical interactions and recombination reactions taking place between monomer molecules in the plasma and/or during the deposition process, become evident in ToF-SIMS spectra.  相似文献   
3.
The natural polysaccharide chitosan and the natural protein collagen are widely used for the preparation of biopolymer materials in the presence of suitable crosslinkers. In this study, crosslinking feasibility of a dicarboxylic acid, namely suberic acid was tested using chitosan and collagen and in addition, thermal and mechanical properties were also tested for the resulting biopolymers. A 3D scaffold biopolymer material was prepared using chitosan at 1.0% (w/v) in the presence of suberic acid at 0.2% (w/v), similarly collagen 0.5% (w/v) in the presence of suberic acid 0.2% (w/v). Upon interaction, both the biopolymers displayed appreciable mechanical and thermal properties which add value to the biopolymers for biomedical applications. Molecular docking studies suggests the non-covalent interactions between the natural polymers and suberic acid is the reason behind the improved properties.  相似文献   
4.
5.
The recently discovered twisted graphene has attracted considerable interest. A simple chemical route was found to prepare twisted graphene by covalently linking layers of exfoliated graphene containing surface carboxyl groups with an amine-containing linker (trans-1,4-diaminocyclohexane). The twisted graphene shows the expected selected area electron diffraction pattern with sets of diffraction spots out with different angular spacings, unlike graphene, which shows a hexagonal pattern. Twisted multilayer graphene oxide could be prepared by the above procedure. Twisted boron nitride, prepared by cross-linking layers of boron nitride (BN) containing surface amino groups with oxalic acid linker, exhibited a diffraction pattern comparable to that of twisted graphene. First-principles DFT calculations threw light on the structures and the nature of interactions associated with twisted graphene/BN obtained by covalent linking of layers.  相似文献   
6.
We have carried out a combined experimental and theoretical investigation of the structures and properties of a family of cadmium phosphochlorides with varying Cl/Cd and P/Cd ratios, Cd2P3Cl, Cd4P2Cl3, Cd3PCl3, and Cd7P4Cl6. Their optical band gaps are in the visible region and the values are sensitive to the Cl/Cd and P/Cd ratios, leading to an increase and decrease, respectively. First‐principles calculations were used to understand the bonding and electronic structures. All phosphochlorides except Cd2P3Cl possess direct band gaps. The calculated dielectric constants and Born effective charges illustrate the bonding, hybridization, and ionic character in these compounds. The band positions indicate the thermodynamic feasibility to perform water splitting. All systems can be used in the hydrogen evolution reaction (HER), where Cd7P4Cl6 has the highest activity and Cd3PCl3 the lowest. The apparent quantum yield is highest in Cd7P4Cl6 (20.1 %) even without the assistance of a co‐catalyst. The HER activity can be understood on the basis of photoelectrochemical measurements.  相似文献   
7.
8.
Near edge x-ray absorption fine structure (NEXAFS) spectroscopy has evolved into a powerful characterization tool for polymeric materials and is increasingly being used to elucidate composition and orientation in thin films of relevance to organic electronic devices. For accurate quantitative compositional analysis, insight into the electronic structure and the ability to assess molecular orientation, reliable reference spectra with known energy resolution and calibrated energy scale are required. We report a set of such NEXAFS spectra from 23 semiconducting polymers and some related materials that are frequently used in organic device research.  相似文献   
9.
The utility of resonant soft x-ray scattering (RSoXS) and reflectivity (RSoXR) is extended and exemplified through the characterization of thin films of polymers relevant to organic solar cells and of dilute polymer solutions. RSoXS and RSoXR are methods that utilize anomalous scattering principles at soft x-ray energies. Soft X-rays cover the carbon, nitrogen and oxygen absorption edges, elements very relevant for polymers and colloids. The rapid changes of optical properties near these absorption edges provide selectivity to specific moieties and high contrast. RSoXR is shown to be a powerful tool for the characterization of bilayers of conducting polymers. The RSoXR results point to an interesting strategy that will allow the chemical interdiffusion and physical roughness at a buried polymer/polymer interface to be determined independently. The high scattering cross sections also allows the investigation of thin films of conjugated polymer blends in transmission at thicknesses for which hard X-rays or neutrons would yield relatively little scattering. By scattering at photon energies that provide strong scattering contrast, even very dilute polymeric solutions yield a useable signal.  相似文献   
10.
The copolymerization of methyl methacrylate (MMA) with glycidyl methacrylate (GMA) at 60°C with 2,2′-azobisisobutyronitrile (AIBN) as radical initiator and in the presence of thiophenol (TP) as chain-transfer agent has been investigated. Monomer reactivity ratios for MMA and GMA are found to be r1 (MMA) = 0.80 ± 0.015 and r2 (GMA) = 0.70 ± 0.015, from which Q and e values are calculated to be 0.68 and ?0.36 for GMA. The initial rate of copolymerization Rp at 60°C with AIBN (0.02 mole/l.) and TP (0.1, 0.01 mole/l.) were found to increase nonlinearly with increasing GMA concentration in the monomer feed. Homopolymerizations of MMA and GMA monomers were studied in the presence and in the absence of thiophenol. The values of δ (= kt1/2/kp) for MMA and GMA were determined to be 10.25 and 3.00 (mole-sec/l.)1/2, respectively. Using the values r1 (MMA), r2 (GMA), δ1 (MMA), δ2 (GMA), and Rp, the cross-termination constants ? for MMA–GMA monomers were determined (average value ? = 0.42). The increase in Rp values with increasing GMA content has been attributed to the cross-termination of MMA–GMA radicals. The transfer constant of TP has also been determined for GMA and found to be 1.00. A MMA–GMA copolymer of low molecular weight, containing 2.01% of oxirane oxygen, was modified by opening of the oxirane ring of GMA by reaction with diethanolamine (DEA). The reaction was carried out at 70 ± 1°C, the copolymer content of epoxy groups and the amine being assumed to be in the molar ratio of 1:4. Addition of a hydrogen-bond acceptor like nitrobenzene decreases, while addition of a hydrogen-bond donor like phenol increases the rate of epoxy ring opening with DEA. This indicates that a hydrogen-bonded intermediate is involved in this reaction and that it weakens the epoxy ring and enhances the rate of its opening with DEA. From the studies of the conversion rates, existence of a “nonspecific” side reaction has been shown which involves the reaction of the terminal epoxy groups of the copolymer and the hydroxyl groups of DEA or formed in the reaction with DEA (involves a chain coupling). DEA can be trifunctional in this reaction. This has been further confirmed from the increase of number-average molecular weights M?n of the copolymers resulting from this coupling and the nitrogen content in the copolymers after modification with DEA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号