首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   3篇
化学   79篇
力学   2篇
数学   8篇
物理学   86篇
  2022年   2篇
  2020年   3篇
  2019年   1篇
  2018年   5篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
  2008年   7篇
  2007年   14篇
  2006年   8篇
  2005年   14篇
  2004年   10篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1996年   7篇
  1995年   3篇
  1994年   5篇
  1993年   2篇
  1992年   6篇
  1991年   4篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1971年   2篇
  1969年   2篇
  1944年   1篇
  1943年   2篇
排序方式: 共有175条查询结果,搜索用时 15 毫秒
1.
2.
Carpene  Ettore  Schaaf  Peter  Ariely  Shmuel  Schnek  Rony 《Hyperfine Interactions》2002,139(1-4):495-499
The steel ASTM A213 P22 is used for superheater outlet header in power plants. During duty cycles lasting over tens of years the temperature is of the order of 545°C and the pressure 125 atm. The microscopic changes in these steels are hard to analyze under working conditions, but they are believed to be responsible for the appearance of creeps in such devices. Investigation of the microscopic modifications will help to predict future failures due to creeps, increasing the reliability and saving a lot of money.We report the investigation of such changes in ASTM A213 P22 steel in use for 30 years as a Superheater header at Haifa power station. The analysis has been carried out using Mössbauer Spectroscopy, X-ray diffraction and optical microscopy. As a result it seems that the morphology and phase change of the carbide phases M3C/M7C3 and M23C6 are the most prominent changes leading to the material failures.  相似文献   
3.
This paper is concerned with a study of bounded perturbations of resonant linear problems. It follows from our results that for certain types of bounded domains Ω ? Rn, n ≥ 2, the Dirichlet problem $\matrix{\Delta u+\lambda_{1}u+g(u)=h(x),\ \ \ x\in\Omega\cr \quad\quad\quad\quad\quad\quad u=0,\ \ \ x\in\partial\Omega,}$ has infinitely many positive solutions, in case λ1 is the principal eigenvalue of ?Δ subject to trivial Dirichlet boundary conditions, g is a nontrivial periodic nonlinearity of zero mean and ∫03A9h(x)?(x)dx = 0, where ? is an eigenfunction corresponding to λ1.  相似文献   
4.
Mechanically responsive surfaces that allow to switch reversibly from a hydrophobic to a hydrophilic substrate are reported. The surfaces are constituted of polyelectrolyte multilayers deposited on modified charged silicone sheets. n bilayers of poly(allylamine)-Nafion (PAH-Naf) and m bilayers of poly(allylamine)-poly(acrylic acid) (PAH-PAA) composed the multilayers. A (PAH-Naf)(n) film possesses a water contact angle of around 105 degrees, whereas the contact angle of a (PAH-Naf)(4)-(PAH-PAA)(m) multilayer is around 50 degrees. When such a film with m < 5 and terminated by PAA is stretched out, its water contact angle increases up to around 100 degrees. Successive elongation/retraction cycles allow the water contact angle to alternate reversibly between 100 and 57 degrees indicating the reversible mechanical responsive nature of the film.  相似文献   
5.
We show, in this paper that multivalent ferrocyanide anions can penetrate into exponentially growing (PGA/PAH)n multilayer films whatever the nature of the last deposited layer. These ions are not able to diffuse out of the film when it is brought in contact with a pure buffer solution. However, the contact of this film with a poly(allylamine) (PAH) or a poly(L-glutamic acid) (PGA) solution leads to the release of ferrocyanide ions from the multilayer. It is shown that the release of ferrocyanide anions, when the film is in contact with a PGA solution, is due to the diffusion of the PGA chains into the film so that an exchange between ferrocyanide ions and PGA chains takes place inside the film. On the other hand, PAH chains do not diffuse into PGA/PAH multilayers. When the film is then brought in contact with a PAH solution, the PAH chains from the solution are expected to strongly interact with the ferrocyanide ions and thus induce a diffusion mechanism of the multivalent anions out of the film, the film/solution interface playing the role of a sink for these ions. This work thus shows that interactions between multivalent ions and exponentially growing films are much more complex than expected at first sight and that polyelectrolyte multilayers must be seen as dynamic entities in which diffusion and exchange processes can take place.  相似文献   
6.
Polyelectrolyte multilayers are now a well established concept with numerous potential applications in particular as biomaterial coatings. To timely control the biological activity of cells in contact with a substrate, multicompartment films made of different polyelectrolyte multilayers deposited sequentially on the solid substrate constitute a promising new approach. In a first paper (Langmuir 2004, 20, 7298) we showed that such multicompartment films can be designed by alternating exponentially growing polyelectrolyte multilayers acting as reservoirs and linearly growing ones acting as barriers. In the present study, we first demonstrate however that these barriers composed of synthetic polyelectrolytes are not degraded despite the presence of phagocytic cells. We propose an alternative approach where exponentially growing poly(L-lysine)/hyaluronic acid (PLL/HA) multilayers, used as reservoirs, are alternated with biodegradable polymer layers consisting in poly(lactic-co-glycolic acid) (PLGA) and acting as barriers for PLL chains that diffuse within the PLL/HA reservoirs. We first show that these PLGA layers can be deposited alternatively with PLL/HA multilayers leading to polyelectrolyte multilayer/hydrolyzable polymeric layer films and acting as a reservoirs/barriers system. Bone marrow cells seeded on these films ending by a PLL/HA reservoir rapidly degrade it and internalize the PLL chains confined in this reservoir. Then the cells degraded locally the PLGA barrier and internalize the PLL localized in a lower (PLL/HA) compartment after 5 days of seeding. By changing the thickness of the PLGA layer, we hope to be able to tune the time delay of degradation. Such mixed architectures made of polyelectrolyte multilayers and hydrolyzable polymeric layers could act as coatings allowing us to induce a time scheduled cascade of biological activities. We are currently working on the use of comparable films with compartments filled by proteins or peptides and in which the degradation of the barriers results from a hydrolysis over tunable time scales.  相似文献   
7.
The formation ofpolysaccharide films based on the alternate deposition of chitosan (CHI) and hyaluronan (HA) was investigated by several techniques. The multilayer buildup takes place in two stages: during the first stage, the surface is covered by isolated islets that grow and coalesce as the construction goes on. After several deposition steps, a continuous film is formed and the second stage of the buildup process takes place. The whole process is characterized by an exponential increase of the mass and thickness of the film with the number of deposition steps. This exponential growth mechanism is related to the ability of the polycation to diffuse "in" and "out" of the whole film at each deposition step. Using confocal laser microscopy and fluorescently labeled CHI, we show that such a diffusion behavior, already observed with poly(L-lysine) as a polycation, is also found with CHI, a polycation presenting a large persistence length. We also analyze the effect of the molecular weight (MW) of the diffusing polyelectrolyte (CHI) on the buildup process and observe a faster growth for low MW chitosan. The influence of the salt concentration during buildup is also investigated. Whereas the CHI/HA films grow rapidly at high salt concentration (0.15 M NaCl) with the formation of a uniform film after only a few deposition steps, it is very difficult to build the film at 10(-4) M NaCl. In this latter case, the deposited mass increases linearly with the number of deposition steps and the first deposition stage, where the surface is covered by islets, lasts at least up to 50 bilayer deposition steps. However, even at these low salt concentrations and in the islet configuration, CHI chains seem to diffuse in and out of the CHI/HA complexes. The linear mass increase of the film with the number of deposition steps despite the CHI diffusion is explained by a partial redissolution of the CHI/HA complexes forming the film during different steps of the buildup process. Finally, the uniform films built at high salt concentrations were also found to be chondrocyte resistant and, more interestingly, bacterial resistant. Therefore, the (CHI/HA) films may be used as an antimicrobial coating.  相似文献   
8.
Polyelectrolyte film fabrication by successive spraying of polycation and polyanion solutions is described and compared to classic dipping. The poly(styrenesulfonate)/poly(allylamine) system is examined in detail. The influence of various parameters such as spraying time, polyelectrolyte concentration, and effect of film drying during multilayer construction is investigated. It is found that film deposition by spraying is easily controlled and very reliable. The thickness of the multilayers grows linearly with the number of deposition cycles similarly to what is observed when dipping substrates or when polyelectrolyte solutions flow over a surface. The assembly of films is very fast and leads to films with small surface roughness as estimated by atomic force microscopy and X-ray reflectometry. Spray deposition allows achieving regular multilayer growth even under conditions for which dipping fails to produce homogeneous films (e.g., extremely short contact times). Moreover, because drainage constantly removes a certain quantity of the excess material arriving at the surface, one can even skip the rinsing step and, thus, speed up even further the whole buildup process.  相似文献   
9.
Laser nitriding of Armco iron in nitrogen was studied for KrF-excimer-laser irradiation. The influence of the energy density and number of pulses on the nitrogen take-up and the nitride phases formed was investigated using Resonant Nuclear Reaction Analysis (RNRA) and Mössbauer spectroscopy. Besides the original a-iron, austenite-Fe(N), martensite-Fe(N),-Fe2+N, and-Fe16N2 were identified. The fraction of the e-phase was found to increase with the number of pulses and the energy density. A threshold energy density of 1.8(2) J/cm2 for the laser nitriding process was found.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号