首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
化学   22篇
力学   1篇
物理学   6篇
  2021年   3篇
  2020年   5篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   5篇
  2010年   1篇
排序方式: 共有29条查询结果,搜索用时 859 毫秒
1.
The copper-based catalysts have been generally regarded as high-performance catalysts for CO_2 hydrogenation toward methanol,while the production of ethanol via C–C coupling on the copper-based catalysts is still challenging. Herein, we report a new catalyst where Cu nanoparticles are embedded in the carbon support with abundant defect sites, achieving a high selectivity for ethanol in the CO_2 hydrogenation. The experiments coupled with the theoretical studies show a clear map where carbon defects serve as anchor sites that can stabilize interfacial copper species, and interfacial Cu sites with low coordination numbers can adsorb two C_1 species and later convert them to a C_2 species via a hydrogenation-induced coupling reaction. Further adjacent Cu atoms of interfacial Cu sites can facilitate OH reduction reactions via the Cu–Cu bridge adsorption to assist the formation of ethanol. Especially, those specific active sites easily disappear in the reducing conditions and during the reaction, the major product can transform from ethanol to methanol.  相似文献   
2.
3.
Solid-lipid nanoparticles (SLNs) are an interesting nanoparticulate delivery system. The present work was carried out with the aim to develop a prolonged release solid-lipid nanoparticulate system for the drug using aceclofenac. Aceclofenac-loaded solid-lipid nanoparticles (ACSLNs) was prepared by hot high pressure homogenization technique. Tripalmitin was used as the lipid core. Surfactants (Poloxamer 188, Tween 80, and soya lecithin) and co-surfactant (sodium tauro glycholate) were used in the formulations. The prepared ACSLN formulations were characterized for encapsulation efficiency (EE), photon correlation spectroscopy (PCS), scanning electron microscopy (SEM), and x-ray diffraction (XRD). From these studies, mean particle diameter of the formulation prepared with combination of surfactants (Poloxmer 188 and Tween 80) was about 200 nm with spherical morphology and amorphous nature. Higher EE was obtained with SLNs prepared using combination of soya lecithin and poloxmer 188. The organization and distribution of the ingredients in the nanoparticulate system were studied by differential scanning calorimetry (DSC) and the results showed that the drug is incorporated into the solid matrix. The prepared formulations demonstrated favorable in vitro prolonged release characteristics. Experimental in vitro release data were substituted in available mathematical models to establish the release kinetics of ACSLNs and it was found to follow first-order kinetics and Higuchi diffusion mechanism. Our results suggest that these SLN formulations could constitute a promising approach for the drug delivery of aceclofenac.  相似文献   
4.

Background  

Opioid agonist drugs produce analgesia. However, long-term exposure to opioid agonists may lead to opioid dependence. The analgesic and addictive properties of opioid agonist drugs are mediated primarily via the mu-opioid receptor (MOR). Opioid agonists appear to alter neuronal morphology in key brain regions implicated in the development of opioid dependence. However, the precise role of the MOR in the development of these neuronal alterations remains elusive. We hypothesize that identifying and characterizing novel MOR interacting proteins (MORIPs) may help to elucidate the underlying mechanisms involved in the development of opioid dependence.  相似文献   
5.
Bimetallic Co–Ni catalysts in the composition range Co(1?x)Nix with x?=?0.0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8 and 1.0, with total metal loading of 15% w/w and supported on TiO2-P25, have been prepared by chemical reduction of the metal acetates by glucose in aqueous alkaline medium and characterized by XRD, TEM, TPR, XPS and H2-TPD techniques. Selective hydrogenation of cinnamaldhyde (CAL) to hydrocinnamaldehyde (HCAL), cinnamyl alcohol (COL) and hydrocinnamyl alcohol (HCOL) has been investigated at 20 bar pressure, in the temperature range 120–140 °C. Co/Ni crystallite sizes in the range 6.0?±?1 nm are observed by TEM. TPR and XPS results indicate the formation of nanoscale Co–Ni alloys, which tend to weaken M–H bond strength, as revealed by H2-TPD measurements. Ni/TiO2 displays very high conversion of CAL (86.9%) with high selectivity (78.7%) towards HCAL formation at 140 °C. Co/TiO2, on the other hand, exhibits relatively lower CAL conversion (55%) and higher selectivity (61.3%) for COL formation at the same temperature. However, bi-metallic Co–Ni catalysts in the composition range x?=?0.3–0.6 display very high conversion (>?98%) due to alloy formation and weakening of M–H bonds. Bimetallic Co0.7Ni0.3 catalyst displays high conversion of CAL (98.1%) and high selectivity (82.9%) towards HCOL. Overall CAL hydrogenation activity at 140 °C, when expressed as TOF, displays a maximum value at the composition Co0.5Ni0.5. Activity and selectivity patterns have been rationalized based on the reaction pathways observed on the catalysts and the influence of Co–Ni alloy formation and M–H bond strength. Thus, a synergetic effect, originating from an appropriate composition of base metal catalysts and reaction conditions, could result in hydrogenation activity comparable with noble metal based catalysts.  相似文献   
6.
The synthesis of heterocyclic compounds has been a hot topic for several decades. Synthetic organic chemists are always in search of new methodologies which are greener for the synthesis of heterocyclic compounds. The ultrasound-assisted reactions have contributed much to this field. This review focuses on the impact of sonochemistry in the synthesis of heterocyclic compounds and covers the literature from 2009 to 2020.  相似文献   
7.
An efficient strategy for the stereoselective synthesis of functionalized cyclopentenes and spiro[2.4]heptenes from strained olefins via C–H activation of aryl ketone O-acetyl ketoximes using [RhCl2Cp]2 catalyst is described. The results revealed that a wide range of readily accessible aryl and heteroaryl ketoximes are compatible in this method for the ring opening of bicyclic and spirotricyclic olefins.  相似文献   
8.
In the present study, we have explored anti-tumor potent Crocus sativus (saffron) as a reducing agent for one pot size controlled green synthesis of gold nanoparticles (AuNps) at ambient conditions. The nanoparticles were characterized using UV–vis, scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and FTIR analysis. The prepared AuNPs showed surface Plasmon resonance centered at 549 nm with average particle size of 15±5 nm. Stable, spherical and triangular crystalline AuNPs with well-defined dimensions were synthesized using anti-tumor potent Crocus sativus (saffron). Crystalline nature of the nanoparticles is confirmed from the HR-TEM, SAED and SEM images, and XRD patterns. From the FTIR spectra it is found that the biomolecules are responsible for capping in gold nanoparticles.  相似文献   
9.
The assembly of atomically precise metal nanoclusters offers exciting opportunities to gain fundamental insights into the hierarchical assembly of nanoparticles. However, it is still challenging to control the assembly of individual nanoclusters at a molecular or atomic level. Herein, we report the dimeric assembly of Au25(PET)18 (PET=2‐phenylethanethiol), where two Au25(PET)18 monomers are bridged together by two Ag atoms to form the Ag2Au50(PET)36 dimer. The Ag2Au50(PET)36 dimer is a unique mesomer, which has not been found in any other chiral metal nanoclusters. Furthermore, the Ag2Au50(PET)36 dimer is distinct from the Au25(PET)18 monomer in its optical, electronic, and catalytic properties. This study is expected to provide a feasible strategy to precisely modulate the assembly of metal nanoclusters with controllable structures and properties.  相似文献   
10.
Two novel compounds 1-(5-[4-fluorophenyl]-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl)-2-thiocyanatoethanone (FSCN) and 1-(5-[4-chlorophenyl]-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl)-2-thiocyanatoethanone (ClSCN) were synthesized and characterized by SC-XRD, 1H NMR, 13C NMR, FTIR, and UV methods. The X-ray diffraction studies were utilized to prove the 3D crystal structures of FSCN and ClSCN. In both the compounds, the packing is mostly driven by C H⋯N, C H⋯O, and C H⋯π (benzene ring as an acceptor) interactions. In ClSCN, additionally, the π⋯π interaction is observed between the pyrazole ring of one molecule and the benzene ring of the other molecule. The experimental values were compared with the results of DFT/B3LYP/6-311G++(d,p) theoretical computations. The pharmacological screening for FSCN and ClSCN was performed using molinspiration and PreADMET web server. To analyze antibacterial inhibition of the synthesized ligands and Ciprofloxacin (control drug) were interacted with antibacterial protein Thymidylate Kinase (TMK) (PDB ID: 4QGG) with the help of AutoDock Vina tool. The ADMET and docking results of FSCN and ClSCN pointed out the better drug likeness nature and good inhibition behavior with TMK protein. The antibacterial in vitro studies suggested that FSCN compound inhibited well with antibacterial strains than that of ClSCN. The current investigation suggests that with further improvements, our compounds could be preferred as substitute medicine for bacterial diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号