首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   1篇
物理学   1篇
  2014年   1篇
  2011年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.

Abstract  

A simple and environmentally benign green method is reported to decorate growing fungal hyphae with high loading of gold nanoparticles, which were initially produced using aqueous tea extract as a sole reducing/stabilizing agent. Inoculation of fungal spores in aqueous suspension of nanoparticles led to the growth of intensely red-coloured fungal hyphae due to the accumulation of gold nanoparticles. Heat treatment of these hybrid materials led to the formation of porous gold microwires. This report is thus an interesting example of using green and sustainable approach to produce nanostructured materials which have potential applications in catalysis, sensing and electronics.  相似文献   
2.
Deposition of nanoparticles on the surface of a variety of materials is a subject of great interest due to their potential applications in electronic devices, sensing, catalysis and bio-medical sciences. In this context, we have explored and compared various methodologies to generate gold and silver nanoparticles on the surface of cellulose fibers. It was found that boiling of the cellulose fibers in alkaline solution of gold and silver salts led to the formation and immobilization of gold and silver nanoparticles. However, in case of lecithin treated and thiol-modified cellulose fibers, high temperature was not essentially required for the formation and deposition of nanoparticles on cellulose substrate. In both these cases, fairly uniform metal nanoparticles were obtained in good yields (~43 wt% gold loading in case of thiol modified cellulose fibers) at room temperature. Borohydride-reduction method resulted in relatively lower loading (~22 wt%) with a wide size distribution of gold and silver nanoparticles on cellulose fibers. All these nanoparticle–cellulose composites were thoroughly characterized using scanning electron microscopy, energy dispersive X-ray, Fourier transform infrared spectroscopy, UV–visible spectroscopy, and elemental analyzer. Thiol modified cellulose–gold nanoparticle composites served as active catalysts in the reduction of 4-nitrophenol into 4-aminophenol.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号