首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
化学   13篇
晶体学   3篇
力学   1篇
数学   1篇
物理学   11篇
  2023年   1篇
  2017年   3篇
  2015年   1篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2009年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2002年   1篇
  1999年   1篇
  1992年   1篇
  1980年   1篇
  1977年   2篇
  1974年   1篇
  1972年   1篇
排序方式: 共有29条查询结果,搜索用时 171 毫秒
1.
Melt or cold crystallization kinetics has a strong bearing on morphology and the extent of crystallization, which significantly affects the physical properties of polymeric materials. Nonisothermal crystallization kinetics are often analyzed by the classical Johnson–Mehl–Avrami–Kolmogorov (JMAK) model or one of its variants, even though they are based on an isothermal assumption. As a result, during the nonisothermal (e.g. constant heating or cooling rate) crystallization of polymeric material, different sets of model parameters are required to describe crystallization at different rates, thereby increasing the total number of model parameters. In addition, due to the uncorrelated nature of these model parameters with the cooling or heating rate, accurate modeling at any intermediate condition is not possible. In the present work, these two limitations of the conventional approach have been eliminated by exhibiting the existence of a functional relationship between cooling or heating rate and effective activation energy during nonisothermal melt or cold crystallization in three linear aromatic polyesters. Furthermore, it has been shown that when the JMAK model is used in conjunction with this functional relationship, it is possible to precisely predict the experimental nonisothermal melt or cold crystallization kinetics at any linear cooling or heating rate with a single set of model parameters.  相似文献   
2.
Journal of Solid State Electrochemistry - Nanostructured MnO2 films were prepared via cathodic electrodeposition under potentiostatic condition. X-ray diffraction (XRD) analyses reveal that the...  相似文献   
3.
Amidines, due to their unique biocompatibility and desirable physical characteristics, have been the functionality of choice as a scaffold for large number of drug synthesis. But still synthesis of amidines in the presence of other active functional groups or pharmacophore, remained a challenge. In this work, a simple and reliable protocol for conversion of nitrile-amide to unsubstituted amidine–amide is developed using metal amide and/or ammonia gas. The scope and efficiency of this synthetic strategy are demonstrated on several substrates which differ in functional groups will be discussed. In this process, 10 novel aryl amidines in good yields (upto 85%) were synthesized. Biological evaluation revealed that compound 4-(aminoiminomethyl)-N-(2-furanyl methyl) benzamide (IC50?=?9?µM) and 4-(aminoiminomethyl)-N-(3-pyridinylmethyl) benzamide (73.36% growth inhibition) showed moderate efficacy for cancer cells.  相似文献   
4.
Within the viscosity-extended Biot framework of wave propagation in porous media, the existence of a slow shear wave mode with non-vanishing velocity is predicted. It is a highly diffusive shear mode wherein the two constituent phases essentially undergo out-of-phase shear motions (slow shear wave). In order to elucidate the interaction of this wave mode with propagating wave fields in an inhomogeneous medium the process of conversion scattering from fast compressional waves into slow shear waves is analyzed using the method of statistical smoothing in randomly heterogeneous poroelastic media. The result is a complex wave number of a coherent plane compressional wave propagating in a dynamic-equivalent homogeneous medium. Analysis of the results shows that the conversion scattering process draws energy from the propagating wave and therefore leads to attenuation and phase velocity dispersion. Attenuation and dispersion characteristics are typical for a relaxation process, in this case shear stress relaxation. The mechanism of conversion scattering into the slow shear wave is associated with the development of viscous boundary layers in the transition from the viscosity-dominated to inertial regime in a macroscopically homogeneous poroelastic solid.  相似文献   
5.
6.
We discuss the notion of spin squeezing considering two mutually exclusive classes of spin-s states, namely, oriented and non-oriented states. Our analysis shows that the oriented states are not squeezed while non-oriented states exhibit squeezing. We also present a new scheme for construction of spin-s states using 2s spinors oriented along different axes. Taking the case of s=1, we show that the ‘non-oriented’ nature and hence squeezing arise from the intrinsic quantum correlations that exist among the spinors in the coupled state.  相似文献   
7.
The discovery of potent new materials for in vivo delivery of nucleic acids depends upon successful formulation of the active molecules into a dosage form suitable for the physiological environment. Because of the inefficiencies of current formulation methods, materials are usually first evaluated for in vitro delivery efficacy as simple ionic complexes with the nucleic acids (lipoplexes). The predictive value of such assays, however, has never been systematically studied. Here, for the first time, by developing a microfluidic method that allowed the rapid preparation of high-quality siRNA-containing lipid nanoparticles (LNPs) for a large number of materials, we have shown that gene silencing assays employing lipoplexes result in a high rate of false negatives (~90%) that can largely be avoided through formulation. Seven novel materials with in vivo gene silencing potencies of >90% at a dose of 1.0 mg/kg in mice were discovered. This method will facilitate the discovery of next-generation reagents for LNP-mediated nucleic acid delivery.  相似文献   
8.
ZnO thin films were prepared by spray pyrolytic decomposition of zinc acetate onto a glass substrate. These films were analyzed for the optical and electrical properties. Optical studies show that in these films the electronic transition is of the direct transition type. The optical energy gap for the films of different thicknesses is estimated to be in the range 2.98 – 3.09 eV. Electrical studies indicate that the films exhibit thermally activated electronic conduction and the activation energies are found to be dependent on the film thickness. The complex impedance measurements were carried out over a wide range of frequencies at room temperature (300 K). All the impedance spectra contain only a single arc, but the arc has a non‐zero intersection with the real axis in the high frequency region. Also, the arc has its centre lying below with the real axis which indicates the multirelaxation behavior of the films. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
9.
Three novel luminescent piano-stool arene ruthenium complexes of general formula [(eta(6)-arene)RuCl(2)(CPI)] (eta(6)-arene = benzene, 1, p-cymene, 2, and hexamethylbenzene, 3; CPI=1-(4-cyanophenyl)imidazole were prepared. The molecular structures of 2 and 3 were determined crystallographically. Reaction of 1-3 with EPh(3) (E = P, As, or Sb) and N-N donor bases such as 2,2'-bipyridine and 1,10-phenanthroline afforded cationic mononuclear complexes of general formula [(eta(6)-arene)RuCl(CPI)(EPh(3))](+) (eta(6)-arene = C(6)H(6), E = P (1a), E = As (1b), E = Sb(1c); eta(6)-arene = C(10)H(14), E = P (2a), E = As (2b), E = Sb (2c); eta(6)-arene = C(6)Me(6), E = P (3a), E = As (3b), E = Sb (3c)) and [(eta(6)-arene)Ru(N-N)(CPI)](2+) (eta(6)-arene = C(6)H(6), N-N = bipy (1d), N-N = phen (1e); eta(6)-arene = C(10)H(14), N-N = bipy (2d), N-N = phen (2e); eta(6)-arene = C(6)Me(6), N-N = bipy (3d), N-N = phen (3e)). Molecular structures of 1a and 2a were also confirmed by X-ray crystallography. Structural studies of the complexes 2, 3, 1a, and 2a supported coordination of CPI through the imidazole nitrogen and the presence of a pendant nitrile group. Structural data also revealed stabilization of crystal packing in the complexes 2, 3, and 2a by C-H...X (X = Cl, F) type inter- and intramolecular interactions and in complex 1a by pi-pi stacking. Moreover, neutral homonuclear bimetallic complexes 2f,g were prepared by using complex 2 as a metallo-ligand, where CPI acts as a bridge between two metal centers. Emission spectra of the mononuclear complexes [(eta(6)-arene)RuCl(2)(CPI)] and its derivatives exhibited intense luminescence when excited in the metal to ligand charge-transfer band.  相似文献   
10.

Background  

Neuronal mechanisms underlying affective disorders such as major depression (MD) are still poorly understood. By selectively breeding mice for high (HR), intermediate (IR), or low (LR) reactivity of the hypothalamic-pituitary-adrenocortical (HPA) axis, we recently established a new genetic animal model of extremes in stress reactivity (SR). Studies characterizing this SR mouse model on the behavioral, endocrine, and neurobiological levels revealed several similarities with key endophenotypes observed in MD patients. HR mice were shown to have changes in rhythmicity and sleep measures such as rapid eye movement sleep (REMS) and non-REM sleep (NREMS) as well as in slow wave activity, indicative of reduced sleep efficacy and increased REMS. In the present study we were interested in how far a detailed spectral analysis of several electroencephalogram (EEG) parameters, including relevant frequency bands, could reveal further alterations of sleep architecture in this animal model. Eight adult males of each of the three breeding lines were equipped with epidural EEG and intramuscular electromyogram (EMG) electrodes. After recovery, EEG and EMG recordings were performed for two days.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号