首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94253篇
  免费   3374篇
  国内免费   2703篇
化学   36403篇
晶体学   958篇
力学   7675篇
综合类   214篇
数学   33771篇
物理学   21309篇
  2023年   345篇
  2022年   373篇
  2021年   551篇
  2020年   707篇
  2019年   678篇
  2018年   10918篇
  2017年   10698篇
  2016年   6830篇
  2015年   1652篇
  2014年   1301篇
  2013年   1569篇
  2012年   5206篇
  2011年   12010篇
  2010年   6724篇
  2009年   7118篇
  2008年   7730篇
  2007年   9685篇
  2006年   1146篇
  2005年   2102篇
  2004年   2228篇
  2003年   2533篇
  2002年   1630篇
  2001年   753篇
  2000年   752篇
  1999年   530篇
  1998年   508篇
  1997年   400篇
  1996年   419篇
  1995年   374篇
  1994年   274篇
  1993年   255篇
  1992年   183篇
  1991年   175篇
  1990年   163篇
  1989年   133篇
  1988年   113篇
  1987年   102篇
  1986年   99篇
  1985年   71篇
  1984年   62篇
  1983年   57篇
  1982年   55篇
  1981年   46篇
  1980年   57篇
  1979年   47篇
  1914年   45篇
  1913年   40篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Bo  Luo  Gao  Wei  Yu  Yuguo  Chen  Xiaojun 《Nonlinear dynamics》2022,110(1):281-311
Nonlinear Dynamics - The perovskite solar cell (PSC) is one of the most promising photovoltaic candidates along with the highly increasing demand for green electricity. One of the main concerns...  相似文献   
2.
From the implementation point of view, the printable magnetic Janus colloidal photonic crystals (CPCs) microspheres are highly desirable. Herein, we developed a dispensing-printing strategy for magnetic Janus CPCs display via a microfluidics-automatic printing system. Monodisperse core/shell colloidal particles and magnetic Fe3O4 nanoparticles precursor serve as inks. Based on the equilibrium of three-phase interfacial tensions, Janus structure is successfully formed, followed by UV irradiation and self-assembly of colloid particle to generate magnetic Janus CPCs microspheres. Notably, this method shows distinct superiority with highly uniform Janus CPCs structure, where the TMPTA/Fe3O4 hemisphere is in the bottom side while CPCs hemisphere is in the top side. Thus, by using Janus CPCs microspheres with two different structural colors as pixel points, a pattern with red flower and green leaf is achieved. Moreover, 1D linear Janus CPCs pattern encapsulated by hydrogel is also fabricated. Both the color and the shape can be changed under the traction of magnets, showing great potentials in flexible smart displays. We believe this work not only offers a new feasible pathway to construct magnetic Janus CPCs patterns by a dispensing-printable fashion, but also provides new opportunities for flexible and smart displays.  相似文献   
3.
The dielectric properties of coordination polymers has been a topic of recent interest, but the role of different functional groups on the dielectric properties of these polymers has not yet been fully addressed. Herein, the effects of electron-donating (R=NH2) and electron-withdrawing (R=NO2) groups on the dielectric behavior of such materials were investigated for two thermally stable and guest-free Zn-based coordination polymers, [Zn(L1)(L2)]n ( 1 ) and [Zn(L1)(L3)]n ( 2 ) [L1=2-(2-pyridyl) benzimidazole (Pbim), L2=5-aminoisophthalate (Aip), and L3=5-nitroisophthalate (Nip)]. The results of dielectric studies of 1 revealed that it possesses a high dielectric constant (κ=65.5 at 1 kHz), while compound 2 displayed an even higher dielectric constant (κ=110.3 at 1 kHz). The electron donating and withdrawing effects of the NH2 and NO2 substituents induce changes in the polarity of the polymers, which is due to the inductive effect from the aryl ring for both NO2 and NH2. Theoretical results from density functional theory (DFT) calculations, which also support the experimental findings, show that both compounds have a distinct electronic behavior with diverse wide bandgaps. The significance of the current work is to provide information about the structure-dielectric property relationships. So, this study promises to pave the way for further research on the effects of different functional groups on coordination polymers on their dielectric properties.  相似文献   
4.
Xu  Feixiang  Luo  Jiangchen  Jiang  Liqun  Zhao  Zengli 《Cellulose (London, England)》2022,29(3):1463-1472
Cellulose - In this research, the production of levoglucosan (LG) and levoglucosenone (LGO) was improved from acid-impregnated cellulose via fast pyrolysis. Thermogravimetric and kinetic analysis...  相似文献   
5.
Luo  Hao  Chen  Long 《Mathematical Programming》2022,195(1-2):735-781
Mathematical Programming - Convergence analysis of accelerated first-order methods for convex optimization problems are developed from the point of view of ordinary differential equation solvers. A...  相似文献   
6.
Atopic dermatitis is characterized by leukocyte migration into the skin dermis and typically driven by excessive chemokine production at the site of inflammation. Conventional topical formulations such as gels, creams, and ointments are insufficient for this treatment because of low penetration of drug molecules into the targeted skin tissues. Herein, using a simple, green, sustainable strategy, we have developed novel primary zein nanoparticles embedded in curcumin (Cur) and coated with silk sericin (ZHSCs) for the topical delivery of Cur to penetrate into the dermis and exercise anti-dermatitis effects on the lesion with minimal side-effects. Transdermal delivery experiments and porcine skin fluorescence imaging indicated that ZHSCs facilitate the penetration of Cur across the epidermis layer of skin to reach deep-seated sites. Notably, ZHSCs = 1:0.25 (zein-to-silk sericin mass ratios of 1:0.25) markedly elevated the skin permeability and cumulative turnover of Cur transferred, which were provided a greater than a 3.8-fold increase relative to free Cur. The special nanoparticles of ZHS = 1:0.25 possessed the deepest localization depth and experience a transition of the particle structure and core-shell separation after penetrating into the dermis of skin. In a cell model of dermatitis induced by tumor necrosis factor α/interferon γ co-stimulation, compared with free Cur, Cur-loaded ZHS nanoparticles down-regulated the generation of inflammatory cytokines and chemokines in keratinocytes through suppression of the nuclear translocation of NF-κBp65 and hence exerted an anti-dermatitis effect. This strategy may provide new avenues and direction for the demanding issues of valid topical delivery systems.  相似文献   
7.
The PeakForce Quantitative Nanomechanical Mapping based on atomic force microscope (AFM) is employed to first visualize and then quantify the elastic properties of a model nitrile rubber/poly(vinyl chloride) (NBR/PVC) blend at the nanoscale. This method allows us to consistently observe the changes in mechanical properties of each phase in polymer blends. Beyond measuring and discriminating elastic modulus and adhesion forces of each phase, we tune the AFM tips and the peak force parameters in order to reliably image samples. In view of viscoelastic difference in each phase, a three‐phase coexistence of an unmixed NBR phase, the mixed phase, and PVC microcrystallites is directly visualized in NBR/PVC blends. The nanomechanical investigation is also capable of recognizing the crosslinked rubber phase in cured rubber. The contribution of the mixed phase was quantified and it was found that the mechanical properties of blends are mainly determined by the homogeneity and stiffness of the mixed phase. This study furthers our understanding the structure–mechanical property relationship of thermoplastic elastomers, which is important for their potential design and applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 662–669  相似文献   
8.
In the paper, the authors establish several integral representations for the generating functions of the large and little Schröder numbers and for the large and little Schröder numbers.  相似文献   
9.
Mesoscopic modeling at the pore scale offers great promise in exploring the underlying structure transport performance of flow through porous media. The present work studies the fluid flow subjected to capillarity-induced resonance in porous media characterized by different porous structure and wettability. The effects of porosity and wettability on the displacement behavior of the fluid flow through porous media are discussed. The results are presented in the form of temporal evolution of percentage saturation and displacement of the fluid front through porous media. The present study reveals that the vibration in the form of acoustic excitation could be significant in the mobilization of fluid through the porous media. The dependence of displacement of the fluid on physicochemical parameters like wettability of the surface, frequency along with the porosity is analyzed. It was observed that the mean displacement of the fluid is more in the case of invading fluid with wetting phase where the driving force strength is not so dominant.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号