首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
化学   2篇
数学   1篇
物理学   21篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1987年   1篇
  1984年   1篇
排序方式: 共有24条查询结果,搜索用时 0 毫秒
1.
2.
The history of resolving the contact line singularity is briefly reviewed, with the emphasis on the traps posed by unstable solutions and the ways to resolve the problem by evoking microscopic physics to compute indefinite parameters of self-similar mesoscopic solutions.  相似文献   
3.
A two-dimensional steady-sate analysis of semi-infinite brittlecrack growth at a constant subcritical rate in an unboundedfully-coupled thermoelastic solid under mixed-mode thermomechanicalloading is made. The loading consists of normal and shear tractionsand heat fluxes applied as point sources (line loads in theout-of-plane direction). A related problem is solved exactly in an integral transformspace, and robust asymptotic forms used to reduce the originalproblem to a set of integral equations. The equations are partiallycoupled and exhibit operators of both Cauchy and Abel types,yet can be solved analytically. The temperature change field at a distance from the moving crackedge is then constructed, and its dominant term is found tobe controlled by the imposed heat fluxes. The role of this termis, indeed, enhanced if the heat fluxes serve to render thecrack as a net heat source/sink for the solid, as opposed tobeing a transmitter of heat across its plane. More generally,the influence of the thermoelastic coupling on this field, aswell as other functions, is found to increase with crack speed.  相似文献   
4.
5.
We present studies of novel nanocomposites of BiNi impregnated into the structure of opals as well as inverse opals. Atomic force microscopy and high resolution elemental analyses show a highly ordered structure and uniform distribution of the BiNi filler in the matrix. These BiNi-based nanocomposites are found to exhibit distinct ferromagnetic-like ordering with transition temperature of about 675 K. As far as we know there exists no report in literature on any BiNi compound which is magnetic.  相似文献   
6.
We consider interaction of vortices in the vector complex Ginzburg-Landau equation (CVGLE). In the limit of small field coupling, it is found analytically that the interaction between well-separated defects in two different fields is long ranged, in contrast to the interaction between defects in the same field which falls off exponentially. In a certain region of parameters of CVGLE, we find stable rotating bound states of two defects-a "vortex molecule."  相似文献   
7.
We report the observation of a Plateau instability in a thin filament of solid gel with a very small elastic modulus. A longitudinal undulation of the surface of the cylinder reduces its area thereby triggering capillary instability, but is counterbalanced by elastic forces following the deformation. This competition leads to a nontrivial instability threshold for a solid cylinder. The ratio of surface tension to elastic modulus defines a characteristic length scale. The onset of linear instability is when the radius of the cylinder is one-sixth of this length scale, in agreement with theory presented here.  相似文献   
8.
9.
The faceting process on Pt(110) is studied with the help of a kinetic Monte Carlo model taking into account realistic Pt-Pt, Pt-CO, and Pt-O interactions. The activation energies of the allowed atomic steps are estimated using available computational and experimental data. The model well reproduces the region in the parameter space where faceting occurs. Under kinetic instability conditions, the simulated faceted pattern forms a periodic hill and valley structure with a lateral periodicity of approximately 140-170 A, which is comparable with experimental data. The simulations reproduce the development of faceting on a realistic time scale.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号