首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
化学   8篇
物理学   2篇
  2016年   1篇
  2010年   1篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
We present an application of cavity-enhanced absorption spectroscopy with an off-axis alignment of the cavity formed by two spherical mirrors and with time integration of the cavity-output intensity for detection of nitrogen dioxide (NO2) and iodine monoxide (IO) radicals using a violet laser diode at λ=404.278 nm. A noise-equivalent (1σ≡ root-mean-square variation of the signal) fractional absorption for one optical pass of 4.5×10-8 was demonstrated with a mirror reflectivity of ∼0.99925, a cavity length of 0.22 m and a lock-in-amplifier time constant of 3 s. Noise-equivalent detection sensitivities towards nitrogen dioxide of 1.8×1010 molecule cm-3 and towards the IO radical of 3.3×109 molecule cm-3 were achieved in flow tubes with an inner diameter of 4 cm for a lock-in-amplifier time constant of 3 s. Alkyl peroxy radicals were detected using chemical titration with excess nitric oxide (RO2+NO→RO+NO2). Measurement of oxygen-atom concentrations was accomplished by determining the depletion of NO2 in the reaction NO2+O→NO+O2. Noise-equivalent concentrations of alkyl peroxy radicals and oxygen atoms were 3×1010 molecule cm-3 in the discharge-flow-tube experiments. Received: 4 February 2003 / Revised version: 10 March 2003 / Published online: 12 May 2003 RID="*" ID="*"Corresponding author. Fax: +44-1865/275-410, E-mail: vlk@physchem.ox.ac.uk  相似文献   
2.
Nitrate radicals, NO3, were produced for the first time by 193 nm laser flash photolysis of N2O5 and HNO3. Detection was achieved due to NO3's strong absorption at 622.7 nm confirmed by measurements of the absorption spectrum in the range of 617–625 nm using both NO3 precursors. Time‐resolved kinetic studies allowed the determination of room temperature rate coefficients for the reactions of NO3 with 2‐methylbut‐2‐ene and NO2 of (1.28 ± 0.11) × 10?11 and (8.4 ± 1.2) × 10?13 cm3 molecule?1 s?1, respectively. The rate coefficients compare well to previous measurements with alternative techniques, suggesting that the reported method is valid and may be applied in follow‐up studies. The rate coefficient for 2‐methylbut‐2‐ene is compared to previous measurements and predictions for the alkene as well as the related alkenol. The new data are consistent with a previously suggested deactivation of the reactive site of the double bond if adjacent to an OH group. A calculated atmospheric lifetime for 2‐methylbut‐2‐ene with respect to NO3‐initiated oxidation of less than 3 min suggests predominant removal by NO3 in the atmosphere.  相似文献   
3.
The microstructure of carbon-carbon composites obtained by chemical vapor infiltration of a carbon fiber felt was comparatively studied by reflection light microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), and laser scanning confocal microscopy (LSCM). Ar+ ion etching was used to reveal and distinguish structural units of the pyrolytic carbon matrix. Mechanically polished samples, polished and subsequently ion etched samples, and fractured samples were compared. The values of surface roughness and surface height after polishing or after polishing and subsequent etching determined by AFM and LSCM correlate well with the degree of texture of the matrix layers obtained by polarized light microscopy and selected area electron diffraction. The carbon matrix is composed of structural units or "cells," which contain a carbon fiber and a sequence of several differently textured layers around each fiber. Within high-textured layers columnar grains are well recognizable using polarized reflection light microscopy and confocal microscopy. The size of depressions within high-textured carbon layers found by AFM after ion etching correlates well with the size of differently tilted domains detected by both TEM and SEM.  相似文献   
4.
The kinetics of the reactions of the atoms O(3P), S(3P), Se(3P), and Te(3P) with a series of alkenes are examined for correlations relating the logarithms of the rate coefficients to the energies of the highest occupied molecular orbitals (HOMOs) of the alkenes. These correlations may be employed to predict rate coefficients from the calculated HOMO energy of any other alkene of interest. The rate coefficients obtained from the correlations were used to © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 351–356, 2006  相似文献   
5.
The reaction between gas-phase ozone and monolayers of the unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, on aqueous solutions has been studied in real time using neutron reflection and surface pressure measurements. The reaction between ozone and lung surfactant, which contains POPC, leads to decreased pulmonary function, but little is known about the changes that occur to the interfacial material as a result of oxidation. The results reveal that the initial reaction of ozone with POPC leads to a rapid increase in surface pressure followed by a slow decrease to very low values. The neutron reflection measurements, performed on an isotopologue of POPC with a selectively deuterated palmitoyl strand, reveal that the reaction leads to loss of this strand from the air-water interface, suggesting either solubilization of the product lipid or degradation of the palmitoyl strand by a reactive species. Reactions of (1)H-POPC on D(2)O reveal that the headgroup region of the lipids in aqueous solution is not dramatically perturbed by the reaction of POPC monolayers with ozone supporting degradation of the palmitoyl strand rather than solubilization. The results are consistent with the reaction of ozone with the oleoyl strand of POPC at the air-water interface leading to the formation of OH radicals. The highly reactive OH radicals produced can then go on to react with the saturated palmitoyl strands leading to the formation of oxidized lipids with shorter alkyl tails.  相似文献   
6.
We present an application of continuous-wave (cw) cavity-enhanced absorption spectroscopy (CEAS) with off-axis alignment geometry of the cavity and with time integration of the cavity output intensity for detection of narrow-band and broadband absorbers using single-mode red diode lasers at λ=687.1 nm and λ=662 nm, respectively. Off-axis cw CEAS was applied to kinetic studies of the nitrate radical using a broadband absorption line at λ=662 nm. A rate constant for the reaction between the nitrate radical and E-but-2-eneof (3.78±0.17)×10-13 cm3 molecule-1 s-1 was measured using a discharge-flow system. A nitrate-radical noise-equivalent (1σ≡ root-mean-square variation of the signal) detection sensitivity of 5.5×109 molecule cm-3 was achieved in a flow tube with a diameter of 4 cm and for a mirror reflectivity of ∼99.9% and a lock-in amplifier time constant of 3 s. In this case, a noise-equivalent fractional absorption per one optical pass of 1.6×10-6 was demonstrated at a detection bandwidth of 1 Hz. A wavelength-modulation technique (modulation frequency of 10 kHz) in conjunction with off-axis cw CEAS has also been used for recording 1f- and 2f-harmonic spectra of the RR(15) absorption of the b1Σg +-X3Σg - (1,0) band of molecular oxygen at =14553.947 cm-1. Noise-equivalent fractional absorptions per one optical pass of 1.35×10-5, 6.9×10-7 and 1.9×10-6 were obtained for direct detection of the time-integrated cavity output intensity, 1f- and 2f-harmonic detection, respectively, with a mirror reflectivity of ∼99.8%, a cavity length of 0.22 m and a detection bandwidth of 1 Hz. Received: 24 June 2002 / Revised version: 12 August 2002 / Published online: 15 November 2002 RID="*" ID="*"Corresponding author. Fax: +44-1865/275410, E-mail: vlk@physchem.ox.ac.uk  相似文献   
7.
A discharge-flow system, coupled to cavity-enhanced absorption spectroscopy (CEAS) detection systems for NO3 at lambda=662 nm and NO2 at lambda=404 nm, was used to investigate the kinetics of the reactions of NO3 with eight peroxy radicals at P approximately 5 Torr and T approximately 295 K. Values of the rate constants obtained were (k/10(-12) cm3 molecule-1 s-1): CH3O2 (1.1+/-0.5), C2H5O2 (2.3+/-0.7), CH2FO2 (1.4+/-0.9), CH2ClO2 (3.8(+1.4)(-2.6)), c-C5H9O2 (1.2(+1.1)(-0.5)), c-C6H11O2 (1.9+/-0.7), CF3O2 (0.62+/-0.17) and CF3CFO2CF3 (0.24+/-0.13). We explore possible relationships between k and the orbital energies of the reactants. We also provide a brief discussion of the potential impact of the reactions of NO3 with RO2 on the chemistry of the night-time atmosphere.  相似文献   
8.
The night-time atmospheric chemistry of the biogenic volatile organic compounds (Z)-hex-4-en-1-ol, (Z)-hex-3-en-1-ol ('leaf alcohol'), (E)-hex-3-en-1-ol, (Z)-hex-2-en-1-ol and (E)-hex-2-en-1-ol, has been studied at room temperature. Rate coefficients for reactions of the nitrate radical (NO(3)) with these stress-induced plant emissions were measured using the discharge-flow technique. We employed off-axis continuous-wave cavity-enhanced absorption spectroscopy (CEAS) for the detection of NO(3), which enabled us to work in excess of the hexenol compounds over NO(3). The rate coefficients determined were (2.93 +/- 0.58) x 10(-13) cm(3) molecule(-1) s(-1), (2.67 +/- 0.42) x 10(-13) cm(3) molecule(-1) s(-1), (4.43 +/- 0.91) x 10(-13) cm(3) molecule(-1) s(-1), (1.56 +/- 0.24) x 10(-13) cm(3) molecule(-1) s(-1), and (1.30 +/- 0.24) x 10(-13) cm(3) molecule(-1) s(-1) for (Z)-hex-4-en-1-ol, (Z)-hex-3-en-1-ol, (E)-hex-3-en-1-ol, (Z)-hex-2-en-1-ol and (E)-hex-2-en-1-ol. The rate coefficient for the reaction of NO(3) with (Z)-hex-3-en-1-ol agrees with the single published determination of the rate coefficient using a relative method. The other rate coefficients have not been measured before and are compared to estimated values. Relative-rate studies were also performed, but required modification of the standard technique because N(2)O(5) (used as the source of NO(3)) itself reacts with the hexenols. We used varying excesses of NO(2) to determine simultaneously rate coefficients for reactions of NO(3) and N(2)O(5) with (E)-hex-3-en-1-ol of (5.2 +/- 1.8) x 10(-13) cm(3) molecule(-1) s(-1) and (3.1 +/- 2.3) x 10(-18) cm(3) molecule(-1) s(-1). Our new determinations suggest atmospheric lifetimes with respect to NO(3)-initiated oxidation of roughly 1-4 h for the hexenols, comparable with lifetimes estimated for the atmospheric degradation by OH and shorter lifetimes than for attack by O(3). Recent measurements of [N(2)O(5)] suggest that the gas-phase reactions of N(2)O(5) with unsaturated alcohols will not be of importance under usual atmospheric conditions, but they certainly can be in laboratory systems when determining rate coefficients.  相似文献   
9.
Rate coefficients for reactions of nitrate radicals (NO3) with (Z)-pent-2-ene, (E)-pent-2-ene, (Z)-hex-2-ene, (E)-hex-2-ene, (Z)-hex-3-ene, (E)-hex-3-ene and (E)-3-methylpent-2-ene were determined to be (6.55 +/- 0.78)x 10(-13) cm3 molecule(-1) s(-1), (3.78 +/- 0.45)x 10(-13) cm3 molecule(-1) s(-1), (5.30 +/- 0.73)x 10(-13) cm(3) molecule(-1) s(-1), (3.83 +/- 0.47)x 10(-13) cm(3) molecule(-1) s(-1), (4.37 +/- 0.49)x 10(-13) cm(3) molecule(-1) s(-1), (3.61 +/- 0.40)x 10(-13) cm3 molecule(-1) s(-1) and (8.9 +/- 1.5)x 10(-12) cm3 molecule(-1) s(-1), respectively. We performed kinetic experiments at room temperature and atmospheric pressure using a relative-rate technique with GC-FID analysis. The experimental results demonstrate a surprisingly large cis-trans(Z-E) effect, particularly in the case of the pent-2-enes, where the ratio of rate coefficients is ca. 1.7. Rate coefficients are discussed in terms of electronic and steric influences, and our results give some insight into the effects of chain length and position of the double bond on the reaction of NO3 with unsaturated hydrocarbons. Atmospheric lifetimes were calculated with respect to important oxidants in the troposphere for the alkenes studied, and NO3-initiated oxidation is found to be the dominant degradation route for (Z)-pent-2-ene, (Z)-hex-3-ene and (E)-3-methylpent-2-ene.  相似文献   
10.
The detachment of barrel-shaped oil droplets from metal, glass and polymer fibres was examined using an atomic force microscope (AFM). The AFM was used to detach the droplets from the fibres while measuring the force-distance relationship. A novel fibre-droplet interfacial tension model was applied to predict the force required to draw the droplet away from its preferential axisymmetric position on the fibre, and also to predict the maximal force required to detach the droplet. The model assumes that the droplet retains a spherical shape during detachment, i.e., that droplet distortion is negligible. This assumption was found to be reasonably accurate for small radius oil droplets (<10 microm), however less accurate for larger droplets (>25 microm). However, it was found that the model produced a good agreement with the maximal detachment force measured experimentally--regardless of droplet size and degree of deformation--even though the model could not predict droplet extension beyond a length of one droplet radius.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号