首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   8篇
  国内免费   1篇
化学   120篇
力学   3篇
数学   2篇
物理学   25篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   1篇
  2014年   5篇
  2013年   7篇
  2012年   11篇
  2011年   23篇
  2010年   8篇
  2009年   5篇
  2008年   20篇
  2007年   10篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2002年   7篇
  2001年   2篇
  1999年   3篇
  1998年   2篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1989年   2篇
  1984年   1篇
  1980年   1篇
  1957年   1篇
排序方式: 共有150条查询结果,搜索用时 31 毫秒
1.
2.
Infrared spectra were recorded for a series of gas-phase Cr+ complexes using infrared multiphoton dissociation (IRMPD) in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The functionalized aromatic ligands (acetophenone, anisole, aniline, and dimethyl aniline) offer a choice of either aromatic ring-pi or n-donor-base binding sites. Use of the FELIX free electron laser light source allowed convenient, rapid scanning of the chemically informative wavelength range from approximately 500 to 1800 cm(-1), which in many cases characterized the preferred site of metal binding, as well as the electronic spin state of the complex. Mono-complex ions, Cr+(ligand), for anisole, aniline, and dimethyl aniline and bis-complex ions, Cr+(ligand)(2), for anisole, aniline, and acetophenone were produced by ligand attachment to laser-desorbed Cr+ ions in the FT-ICR cell. The photodissociation yields plotted as a function of wavelength were interpreted as approximations to the infrared absorption spectra and were compared with computed spectra of different possible geometries and spin states. Clear-cut diagnostic features in the spectra of the acetophenone, anisole, and aniline complexes showed the sites of Cr+ attachment to be the carbonyl oxygen site for acetophenone (bis-complex) and the ring-pi site for anisole and aniline (both mono- and bis-complexes). The bis-complexes of aniline and anisole are low-spin (probably doublet) states, while the mono-complexes of these same ligands are high-spin (sextet) states. The dimethyl aniline complex gave a cluttered spectrum in poor agreement with calculations, which may reflect a mixture of binding-site isomers in this case.  相似文献   
3.
4.
N-Heterocyclic carbene (NHC) ligands are ubiquitously utilized in catalysis. A common catalyst design model assumes strong M–NHC binding in this metal–ligand framework. In contrast to this common assumption, we demonstrate here that lability and controlled cleavage of the M−NHC bond (rather than its stabilization) could be more important for high-performance catalysis at low catalyst concentrations. The present study reveals a dynamic stabilization mechanism with labile metal–NHC binding and [PdX3][NHC-R]+ ion pair formation. Access to reactive anionic palladium intermediates formed by dissociation of the NHC ligands and plausible stabilization of the molecular catalyst in solution by interaction with the [NHC-R]+ azolium ion is of particular importance for an efficient and recyclable catalyst. These ionic Pd/NHC complexes allowed for the first time the recycling of the complex in a well-defined form with isolation at each cycle. Computational investigation of the reaction mechanism confirms a facile formation of NHC-free anionic Pd in polar media through either Ph–NHC coupling or reversible H–NHC coupling. The present study formulates novel ideas for M/NHC catalyst design.  相似文献   
5.
The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation–cytosine complexes exhibit both similar and distinctive spectral features over the range of ~1000–1900 cm-1. The IRMPD spectra of the Li+(cytosine), Na+(cytosine), and K+(cytosine) complexes are relatively simple but exhibit changes in the shape and shifts in the positions of several bands that correlate with the size of the alkali metal cation. The IRMPD spectra of the Rb+(cytosine) and Cs+(cytosine) complexes are much richer as distinctive new IR bands are observed, and the positions of several bands continue to shift in relation to the size of the metal cation. The measured IRMPD spectra are compared to linear IR spectra of stable low-energy tautomeric conformations calculated at the B3LYP/def2-TZVPPD level of theory to identify the conformations accessed in the experiments. These comparisons suggest that the evolution in the features in the IRMPD action spectra with the size of the metal cation, and the appearance of new bands for the larger metal cations, are the result of the variations in the intensities at which these complexes can be generated and the strength of the alkali metal cation-cytosine binding interaction, not the presence of multiple tautomeric conformations. Only a single tautomeric conformation is accessed for all five alkali metal cation–cytosine complexes, where the alkali metal cation binds to the O2 and N3 atoms of the canonical amino-oxo tautomer of cytosine, M+(C1).
Figure
?  相似文献   
6.
In mass-spectrometry based peptide sequencing, formation of b- and y-type fragments by cleavage of the amide C–N bond constitutes the main dissociation pathway of protonated peptides under low-energy collision induced dissociation (CID). The structure of the b 2 fragment ion from peptides containing glutamine (Gln) and asparagine (Asn) residues is investigated here by infrared ion spectroscopy using the free electron laser FELIX. The spectra are compared with theoretical spectra calculated using density functional theory for different possible isomeric structures as well as to experimental spectra of synthesized model systems. The spectra unambiguously show that the b2-ions do not possess the common oxazolone structure, nor do they possess the alternative diketopiperazine structure. Instead, cyclic imide structures are formed through nucleophilic attack by the amide nitrogen atom of the Gln and Asn side chains. The alternative pathway involving nucleophilic attack from the side-chain amide oxygen atom leading to cyclic isoimide structures, which had been suggested by several authors, can clearly be excluded based on the present IR spectra. This mechanism is perhaps surprising as the amide oxygen atom is considered to be the better nucleophile; however, computations show that the products formed via attack by the amide nitrogen are considerably lower in energy. Hence, b2-ions with Asn or Gln in the second position form structures with a five-membered succinimide or a six-membered glutarimide ring, respectively. b2-Ions formed from peptides with Asn in the first position are spectroscopically shown to possess the classical oxazolone structure.   相似文献   
7.
Infrared spectroscopy of gas-phase Cr+ complexes of aniline was studied using the FELIX free electron laser interfaced to a Fourier transform ion cyclotron resonance spectrometer. For both the monomer complex Cr+(aniline) and the dimer complex Cr+(aniline)2 the spectra showed features indicating binding of the metal ion to the aromatic pi cloud, as opposed to the nitrogen atom. Agreement with DFT-calculated infrared absorption spectra for the ring-bound complexes was good using the MPW1PW91 functional, but the B3LYP functional predicted the wrong binding site. The spectroscopic results resolve the ambiguity in computational prediction of the preferred binding site and support the use of the MPW1PW91 functional for these systems.  相似文献   
8.
The dependency of the critical Marangoni number on the geometrical aspect ratio of the floating half zone is essential to predict the onset of oscillatory thermocapillary convection.The experimental studies in the microgravity conditions on floating half zones of several centimeters in diameter have predicted that the critical Marangoni number increases with the increasing aspect ratio,and the terrestrial experimental studies have predicted the contradictory conclusion for floating half zones of several mil...  相似文献   
9.
Anionic group II metal nitrate clusters of the formula [M2(NO3)5], where M2 = Mg2, MgCa, Ca2, and Sr2, are investigated by infrared multiple photon dissociation (IRMPD) spectroscopy to obtain vibrational spectra in the mid-IR region. The IR spectra are dominated by the symmetric and the antisymmetric nitrate stretches, with the latter split into high and low-frequency components due to the distortion of nitrate anion symmetry by interactions with the cation. Density functional theory (DFT) is used to predict geometries and vibrational spectra for comparison to the experimental spectra. Calculations yield two stable isomers: the first one contains two terminal nitrate anions on each cation and a single bridging nitrate (“mono-bridging”), while the second structure features a single terminal nitrate on each cation with three bridging nitrate ligands (“tri-bridging”). The tri-bridging isomer is calculated to be lower in energy than the mono-bridging one for all species. Theoretical spectra of the tri-bridging structure provide a better qualitative match to the experimental infrared spectra of [Mg2(NO3)5] and [MgCa(NO3)5]. However, the profile of the low-frequency ν 3 band for the Mg2 complex suggests a third possible isomer not predicted by theory. The IRMPD spectra of the Ca2 and Sr2 complexes are better reconciled by a weighted summation of the spectra of both isomers suggesting that a mixture of structures is present.  相似文献   
10.
The method of density matching between the solid and liquid phases is often adopted to effectively eliminate the effect of sedimentation of suspensions in studies on dynamic behaviour of a colloidal system. However, the associated changes in the solvent composition may bring side effects to the properties investigated and therefore might lead to a faulty conclusion if the relevant correction is not made. To illustrate the importance of this side effect, we present an example of the sedimentation influence on the coagulation rate of suspensions of 2μm (diameter) polystyrene. The liquid mixtures, in the proper proportions of water (H2O), deuterium oxide (D2O) and methanol (MeOH) as the liquid phase, density-matched and unmatched experiments are performed. Besides the influence of viscosity, the presence of methanol in solvent media, used to enhance the sedimentation effect, causes significant changes (reduction) in rapid coagulation rates compared to that in pure water. Without the relevant corrections for those non-gravitational factors it seems that gravitational sedimentation would retard the coagulation. The magnitude of the contribution from the non-gravitational factor is quantitatively determined, making the relevant correction possible. After necessary the influence of the sedimentation on coagulation rates at corrections for all factors, our experiments show that the initial stage of the coagulation is not observable.  相似文献   
1 [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号