首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学   5篇
物理学   5篇
  2021年   1篇
  2017年   1篇
  2015年   1篇
  2011年   1篇
  2009年   3篇
  2008年   1篇
  2002年   1篇
  1981年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Emissive power per unit area of a blackbody has been modeled as a function of frequency using quantum electrodynamics, semi-classical and classical approaches in the available literature. Present work extends the classical lumped-parameter systems model of Brownian motion of nanoparticle to abstract an emissive power per unit area model for nanoparticle radiating at temperature greater than absolute zero. The analytical model developed in present work has been based on synergism of local deformation leading to local motion of nanoparticle due to photon impacts. The work suggests the hypothesis of a free parameter f′ characterizing the damping coefficient of resistive forces to local motion of nanoparticle and the manipulation of which is possible to realize desired emissivity from nanoparticles. The model is validated with the well established Planck’s radiation law.  相似文献   
2.
3.
4.
Nanoscale laser processing and diagnostics   总被引:2,自引:0,他引:2  
The article summarizes research activities of the Laser Thermal Laboratory on pulsed nanosecond and femtosecond laser-based processing of materials and diagnostics at the nanoscale using optical-near-field processing. Both apertureless and apertured near-field probes can deliver highly confined irradiation at sufficiently high intensities to impart morphological and structural changes in materials at the nanometric level. Processing examples include nanoscale selective subtractive (ablation), additive (chemical vapor deposition), crystallization, and electric, magnetic activation. In the context of nanoscale diagnostics, optical-near-field-ablation-induced plasma emission was utilized for chemical species analysis by laser-induced breakdown spectroscopy. Furthermore, optical-near-field irradiation greatly improved sensitivity and reliability of electrical conductance atomic force microscopy enabling characterization of electron tunneling through the oxide shell on silicon nanowires. Efficient in-situ monitoring greatly benefits optical-near-field processing. Due to close proximity of the probe tip with respect to the sample under processing, frequent degradation of the probe end occurs leading to unstable processing conditions. Optical-fiber-based probes have been coupled to a dual-beam (scanning electron microscopy and focused ion beam) system in order to achieve in-situ monitoring and probe repair.  相似文献   
5.
6.
A library of 864 extracts prepared from Irish marine organisms was screened in the search for novel antioxidants. Chemical investigation of the most promising extract obtained from the common lichen Lichina pygmaea led to the isolation of five resorcinol derivatives. An unusual urea moiety was found embedded in two of these compounds, pygmanilines A (1) and B (2) and their structures were confirmed by one-step chemical syntheses.  相似文献   
7.
Nanoparticle solutions are considered promising for realizing low cost printable high performance flexible electronics. In this letter, excimer laser annealing (ELA) was employed to induce melting of solution-deposited ZnO nanoparticles and form electrically conductive porous films. The properties of the films were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, DC conductance, and photoluminescence measurements. Thin-film field-effect transistors have been fabricated by ELA without the use of conventional vacuum or any high temperature thermal annealing processes. The transistors show n-type accumulation mode behavior with mobility greater than 0.1 cm2/V s and current on/off ratios of more than 104. Optimization and control of the laser processing parameters minimized thermal impact on the substrate. This technique can be beneficial in the fabrication of metal oxide based electronics on heat sensitive flexible plastic substrates using low-cost, large-area solution processing combined with direct printing techniques.  相似文献   
8.
We propose a novel method for alleviating the stringent CFL condition imposed by the sound speed in simulating inviscid compressible flow with shocks, contacts and rarefactions. Our method is based on the pressure evolution equation, so it works for arbitrary equations of state, chemical species etc. and is derived in a straight-forward manner. Similar methods have been proposed in the literature, but the equations they are based on and the details of the methods differ significantly. Notably our method leads to a standard Poisson equation similar to what one would solve for incompressible flow, but has an identity term more similar to a diffusion equation. In the limit as the sound speed goes to infinity, one obtains the Poisson equation for incompressible flow. This makes the method suitable for two-way coupling between compressible and incompressible flows and fully implicit solid–fluid coupling, although both of these applications are left to future work. We present a number of examples to illustrate the quality and behavior of the method in both one and two spatial dimensions, and show that for a low Mach number test case we can use a CFL number of 300 (whereas previous work was only able to use a CFL number of 3 on the same example).  相似文献   
9.
We propose a novel method to implicitly two-way couple Eulerian compressible flow to volumetric Lagrangian solids. The method works for both deformable and rigid solids and for arbitrary equations of state. The method exploits the formulation of [11] which solves compressible fluid in a semi-implicit manner, solving for the advection part explicitly and then correcting the intermediate state to time tn+1 using an implicit pressure, obtained by solving a modified Poisson system. Similar to previous fluid–structure interaction methods, we apply pressure forces to the solid and enforce a velocity boundary condition on the fluid in order to satisfy a no-slip constraint. Unlike previous methods, however, we apply these coupled interactions implicitly by adding the constraint to the pressure system and combining it with any implicit solid forces in order to obtain a strongly coupled, symmetric indefinite system (similar to [17], which only handles incompressible flow). We also show that, under a few reasonable assumptions, this system can be made symmetric positive-definite by following the methodology of [16]. Because our method handles the fluid–structure interactions implicitly, we avoid introducing any new time step restrictions and obtain stable results even for high density-to-mass ratios, where explicit methods struggle or fail. We exactly conserve momentum and kinetic energy (thermal fluid–structure interactions are not considered) at the fluid–structure interface, and hence naturally handle highly non-linear phenomenon such as shocks, contacts and rarefactions.  相似文献   
10.
Research on Chemical Intermediates - In this article, a mild and highly efficacious synthetic route has been developed for the synthesis of spiro[indoline-3,9′-xanthene]trione and...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号