首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
物理学   6篇
  2000年   1篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
The nonlinear wave structures of large amplitude ion-acoustic waves are investigated in an electron beam-plasma system with trapped electrons, by the pseudopotential method. The speed of the ion-acoustic wave increases as the effect of trapped electrons decreases and the beam temperature increases. The region of the existence of ion-acoustic waves is examined, showing that the condition of the existence sensitively depends on the parameters such as the effects of the electron beam density and temperature, electrostatic potential, and the effect of trapped electrons. It turns out that the region of existence spreads as the effect of trapped electrons decreases and beam temperature increases. New findings of large amplitude ion-acoustic waves in an electron beam-plasma system with trapped electrons are predicted  相似文献   
3.
A new type of nonlinear wave modes which occurs in the electrostatic drift waves in an inhomogeneous magnetized plasma is presented. The author predicts the existence of a new type of spiky solitary wave and an explosive mode with a negative potential as stationary solutions of this equation. These solutions are a consequence of a density gradient and not connected with a temperature gradient. These new nonlinear wave solutions appear to make a step forward in the general scheme of nonlinear normal modes for plasma waves. Using these nonlinear wave modes, the author can explain the solitary structure and the explosive event concerning nonlinear drift waves propagating in space  相似文献   
4.
The dust grain charging effect on large amplitude ion-acoustic double layers in a dusty plasma are investigated by the numerical calculation. The nonlinear structures of ion-acoustic double layers are examined, showing that the characteristics of the double layer sensitively depend on the dust charging effect, the influence of the ion temperature, the electrostatic potential, and the Mach number. The flow of the plasma current to the surface of dust particles increases the dust charge numbers. The effect of the ion temperature decreases the propagation speed of the ion-acoustic double layers and decreases the dust charge numbers. It is found that rarefactive double layers can propagate in this system. New findings of large amplitude ion-acoustic double layers with the dust charging effect and finite ion temperature in a dusty plasma are predicted  相似文献   
5.
The association between the modified Korteweg-de Vries solitary wave and the modulationally unstable envelope solitary wave in a weakly relativistic unmagnetized plasma with trapped electrons is discussed. The effect of trapped electrons modifies the nonlinearity of the nonlinear Schrodinger equation and gives rise to the propagation of the modulationally unstable ion-acoustic solitary wave. The amplitude of the envelope solitary wave increases while the number of trapped electrons decreases. The velocity of the solitary wave decreases with increasing ionic temperature and increasing particle velocities. The ion oscillation mode, which satisfies the nonlinear dispersion relation, is also derived. The theory is applied to explain space observations of the solar energetic flows in interplanetary space and of the energetic particle events in the Earth's magnetosphere  相似文献   
6.
Double-ended alkanedithiols, 1,9-nonanedithiol and 1,5-pentanedithiol, formed self-assembled monolayers (SAMs) on Au(l11) substrates and were used to adsorb silver ions from an ethanolic solution of silver nitrate and formed Ag–dithiol–Au multilayer structures. Ellipsometry, contact angle measurement and X-ray photoelectron spectroscopy (XPS) confirmed that the alkanedithiol molecules formed SAMs with only one-ended thiol groups attached to the Au substrates, which was supported by molecular mechanics calculation. XPS and X-ray Auger electron spectroscopy (XAES) indicated that silver ions were deposited onto the SAMs from the solution by the chemical reaction of silver nitrate with another-ended thiol groups of the SAMs. Atomic force microscopy (AFM) was used to observe SAMs and multilayer structures. Received: 20 January 2000 / Accepted: 18 April 2000 / Published online: 9 August 2000  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号