首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   2篇
  国内免费   1篇
化学   36篇
晶体学   1篇
力学   1篇
物理学   12篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   1篇
  2013年   3篇
  2012年   6篇
  2011年   5篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2003年   4篇
  2002年   2篇
  1999年   1篇
  1985年   1篇
  1976年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
1.
Journal of Solid State Electrochemistry - Manganese phosphate (Mn3(PO4)2) particles decorated polyaniline (PANI) have been proposed as a promising electrode material for supercapacitors. Mn3(PO4)2...  相似文献   
2.
Journal of Thermal Analysis and Calorimetry - The solar collector (reflector and receiver) is the primary device being used in the concentrating solar power technologies for tapping the solar...  相似文献   
3.
Four 2-oxo-1,2-dihydroquinoline-3-carbaldehyde N-substituted thiosemicarbazone ligands (H(2)-OQtsc-R, where R = H, Me, Et or Ph) and their corresponding new copper(II) complexes [CuCl(2)(H(2)-OQtsc-H)]·2H(2)O (1), [CuCl(2)(H(2)-OQtsc-Me)]·2H(2)O (2), [CuCl(2)(H(2)-OQtsc-Et)(CH(3)OH)]Cl (3) and [CuCl(H-OQtsc-Ph)]·CH(3)OH (4) have been synthesized in order to correlate the effect of terminal N-substitution on coordination behaviour, structure and biological activity. Single crystal X-ray diffraction studies revealed that the complexes 1, 2 and 3 have square pyramidal geometry around the central metal ion. In the complexes 1 and 2, the copper ion is coordinated by the ligand with ONS donor atoms, one chloride ion in apical position and the other chloride in the basal plane. Complex 3 consists of [CuCl(2)(H(2)-OQtsc-Et)(CH(3)OH)](+) cation and a chloride as counter ion. The copper ion is coordinated by the ligand with ONS donor atoms and by one chloride ion in the basal plane. One methanol molecule is bonded through its neutral oxygen in the apical position. Complex 4 is square planar with the ligand coordinating through uni-negative tridentate ONS(-) and by one chloride ion in the basal plane. The binding of complexes with lysozyme protein was carried out by fluorescence spectroscopy. Investigations of antioxidation properties showed that all the copper(II) complexes have strong radical scavenging properties. The cytotoxicity of the complexes 3 and 4 against NIH 3T3 and HeLa cell lines showed that synergy between the metal and ligands results in a significant enhancement in the cell death with IC(50) of ~10-40 μM. A size dependence of substitution at terminal N in the thiosemicarbazones on the biological activities of the complexes has been observed.  相似文献   
4.
Y2O3 nanoparticles and nanorods have been firstly synthesized in bulk Ti-Y films prepared by magnetron sputtering on Si (100) substrates at different temperatures. X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDS) are used to characterize the structure, morphology, and composition of the as-synthesized nanoparticles and nanorods. The mechanical properties of the sputtered films are investigated using nanoindentation techniques. The results indicate that both the nanoparticles and nanorods have a pure cubic Y2O3 structure resulting from the reaction of Y atoms with the residual O2 in the vacuum chamber, and are free from defects and dislocations with uniform diameters of about 30 nm. The Y2O3 nanoparticles mainly distribute at the grain boundaries of the Ti matrix and the nanorods have lengths ranging from 250 nm to more than 1 μm with the growth direction parallel to the (002) plane. As the growth temperature elevates, the nanoparticles turn to be coarsening while more and longer nanorods are inclined to form. Compared with the Ti film, the TiY films have a remarkable increase in hardness, but do not exhibit expected increase in elastic modulus. Finally, the growth mechanism is also briefly discussed.  相似文献   
5.
6.

Nickel oxide (NiO) was synthesized via a one-step facile method. X-ray diffraction analysis confirmed the face-centered cubic structure of NiO. The bonding nature and surface purity were confirmed via Fourier-transform infrared spectroscopy. NiO revealed partial spherical morphology with less particle aggregation. The optical bandgap of NiO was found to be 3.75 eV. Cyclic voltammetry revealed well-defined oxidation and reduction peaks for NiO. The charge–discharge curve exhibited specific capacitance of 184.6 F/g at current density of 0.3 A/g. NiO electrode exhibited longer cyclic stability of 93 % up to 1500 cycles. In addition, NiO + H2O2 revealed efficient photocatalytic degradation of methylene blue (organic pollutant) under visible-light irradiation with degradation efficiency of ~88 %. These results confirm that nanosized NiO is more suitable for dual application.

  相似文献   
7.
New Scheelite-related solid solutions of the compositions Nax/2Bi1−x/2MoxV1−xO4 (0≤x≤1) and Bi1−x/3 MoxV1−xO4(0≤x≤0.2) have been synthesised by the substitution of Na and Mo at the A and B sites respectively of the ABO4 type ferroelastic BiVO4. The phases were characterised using chemical analysis, powder X-ray diffraction, scanning electron microscopy, EDAX, and Raman spectroscopy. While almost a continuous solid solution is obtained for the series Nax/2Bi1−x/2MoxV1−xO4, the absence of Na at the A-site results only in a narrow stability region for the other series, Bi1−x/3 MoxV1−xO4 where 0≤x≤0.2. Raman spectra of selected samples at room temperature also suggest that vanadium and molybdenum atoms are disordered at the tetrahedral sites.  相似文献   
8.

Abstract  

N 6-benzyladeninium nitrate, (1), C12H12N5 + NO3 crystallizes in P2 1/c, with a = 15.0035(13), b = 5.3788(5), c = 16.8954(13) ?, β = 107.331(6)°, Z = 4 and N 6-benzyladeninium 3-hydroxy picolinate, (2), C12H12N5 + C6H4NO3 , crystallizes in P1, with a = 8.3017(4), b = 14.6170(7), c = 14.7909 (8) ?, α = 78.801 (4), β = 81.979 (4),γ = 88.849 (4)°, Z = 4. In both the salts, the cation exists as N(7)H tautomer with protonation at the N3 atom. The dihedral angle of 76.64 (16)° for (1), 67.91(12)° for (cation A) and 68.27 (13)° for (cation B) in (2), between the adenine plane and phenyl ring plane, the distal orientation of the N6 substituent with respect to the imidazole ring and the free N1 position, make these benzyladeninium cations meet all the requirements necessary for cytokinin activity. The crystal structures are stabilized by N–H···N, N–H···O, C–H···O hydrogen bonds and C–H···π stacking interaction between symmetry related benzyladenine molecule.  相似文献   
9.
Journal of Inclusion Phenomena and Macrocyclic Chemistry - Mercury is a frequent, bioaccumulative, extremely toxic pollutant in the environment. Mercury contamination can be accumulated along the...  相似文献   
10.
The first quaternary vanadium niobium compounds containing triangular Nb(3) clusters corresponding to the general formula, AVNb(3)Cl(11) (A = K, Rb, Cs, Tl), have been prepared in sealed quartz tubes from stoichiometric amounts of ACl (A = K, Rb, Cs), or Tl metal, VCl(3), Nb powder, and NbCl(5) heated at 740 degrees C. The compounds crystallize in the orthorhombic space group Pnma (No. 62). The crystal structures of the Rb and Tl members were determined by single-crystal X-ray diffraction techniques. Crystal data: a = 12.771(3) A, b = 6.811(2) A, c = 17.183(3) A, V = 1494.6(1) A(3), and Z = 4 for A = Rb; and a = 12.698(5) A, b = 6.798(3) A, c = 17.145(10) A, V = 1480.0(13) A(3), and Z = 4 for A = Tl. The crystal structure of AVNb(3)Cl(11) consists of triangular Nb(3)Cl(13) clusters (Nb-Nb = 2.826 A) connected to each other via four outer ligands to form infinite chains along the b-axis. The chains are connected by vanadium atoms located in an octahedral environment to form puckered sheets. The A(+) counterions are located between adjacent sheets and coordinate to twelve chlorine ligands in anticubeoctahedral geometry. Electronic structure calculations show bonding orbitals similar to those in Nb(3)Cl(8). Magnetic susceptibility measurements show paramagnetic Curie Weiss behavior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号