首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   1篇
化学   3篇
物理学   1篇
  2020年   1篇
  2013年   1篇
  2010年   1篇
  2005年   1篇
排序方式: 共有4条查询结果,搜索用时 62 毫秒
1
1.
We report the dramatic impact of the addition of N-heterocyclic carbenes (NHCs) on the reactivity and selectivity of heterogeneous Ru catalysts in the context of C−H activation reactions. Using a simple and robust method, we prepared a series of new air-stable catalysts starting from commercially available Ru on carbon (Ru/C) and differently substituted NHCs. Associated with C−H deuteration processes, depending on Ru/C-NHC ratios, the chemical outcome can be controlled to a large extent. Indeed, tuning the reactivity of the Ru catalyst with NHC enabled: 1) increased chemoselectivity and the regioselectivity for the deuteration of alcohols in organic media; 2) the synthesis of fragile pharmaceutically relevant deuterated heterocycles (azine, purine) that are otherwise completely reduced using unmodified commercial catalysts; 3) the discovery of a novel reactivity for such heterogeneous Ru catalysts, namely the selective C-1 deuteration of aldehydes.  相似文献   
2.
An experimental rig coupled with a high speed data-logging and recording system and a personal computer was specially designed and constructed for the real-time measurement of mechanical strength (in terms of drawdown force) as a function of volumetric flow rate and roller speed for virgin low-density polyethylene (LDPE) and reprocessed LDPE during a filament stretching process. The effect of the number of extrusion passes for the reprocessed LDPE was our main interest. The experimental rig was connected to the end of a single-screw extruder, which was used to melt and extrude the polymers. The LDPE filaments were then solidified and collected for studying the mechanical properties. The mechanical strength of the virgin LDPE and reprocessed LDPE were investigated in both molten and solidified states. The mechanical strengths of the virgin and reprocessed LDPEs under these two states are discussed and compared in terms of change in magnitude under a wide range of processing conditions (volumetric flow rate, die temperature, and roller speed). The results suggested that in the molten state the drawdown force for LDPE melts was dependent on volumetric flow rate, die temperature, roller speed, and the number of reprocessing passes. The drawdown force being affected by the number of reprocessing passes could be explained by molecular degradation and gelation effects when using high volumetric flow rates. In the solidified state, the tensile properties of the solidified LDPE increased with roller speed. The effect of the number of extrusion passes for the solidified LDPE was similar to that for the molten LDPE. In the case of volumetric flow rates, the mechanical properties of the solidified LDPE decreased with increasing volumetric flow rate, whereas those of the molten LDPE exhibited the opposite effect. Thus, the mechanical strength of the molten LDPE could not always be used to assess the mechanical properties of the solidified LDPE.  相似文献   
3.
An electro‐magnetized capillary die via a parallel co‐extrusion technique was used to study the changes in the overall and radial extrudate swell ratio of polystyrene (PS) melt flowing in a single screw extruder. The effects of magnetic flux density, wall shear rate (screw rotating speed) and die temperature were studied. The results suggested that, in the case of non‐magnetic die the average overall swell ratio of the melt ranged from 1.25 to 1.55. The swelling ratio increased with increasing wall shear rate up to 8.5 sec?1 and then decreased at 17.1 sec?1. Increasing die temperature caused a reduction of extrudate swell ratio. The changes in extrudate swell ratio can be explained using the simultaneously measured velocity profiles during the flow in the die, and the swell ratio decreased with increasing radial position. Melt contraction of the melt layer near the die wall was observed. The die temperature was found to have no effect on the change of the radial extrudate swell profiles. When an electro‐magnetized die was used, the average overall swell ratio was found to increase with increasing magnetic flux density to a maximum value and then decreased at higher flux densities. The magnetic flux density of the maximum swell was changed by the wall shear rate. It was associated with a balance of elastic and magnetic energies during the flow. The magnetic energy was thought to have a pronounced effect on the swell ratio at low shear rate and low die temperature. Considering the radial position, the highest swell ratio occurred at the duct center, in the range 2.4–3.3. There was no extrudate contraction of the melt layer near the die wall. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
4.
The proteins of different faction of cowpea [Vigna unguiculata (L.) Walp] were fractionated by capillary electrophoresis (CE). The extracting solvent system was one of the most critical factors in the optimization exercise. To improve reproducibility, seed samples needed to be defatted with chloroform/methanol (V:V=2:1) as preferred prior to protein extraction. Proteins were extracted from seeds, leaves and flowers with 50% aqueous 1‐propanol and separated on a 50 (m×20 cm fused silica capillary column using a UV detector at 200 nm. Separation was conducted at constant voltage (10 kV, 40°C), using iminodiacetic acid (pH 2.5) containing 0.05% hydroxypropylmethylcellulose (HPMC) and 20% acetonitile. The results showed that proteins extracted from all fraction of cowpea were successfully separated by CE in less than 20 min. Seed extracts provided the greatest number of eluted protein peaks, followed by flower and leaf, respectively. The seed‐protein extracts provided unique CE patterns for different varieties; hence the seed was the tissue chosen as being most suitable for variety identification. As a result, an optimized procedure was developed to provide rapid identification of cowpea varieties, based on capillary electrophoregram patterns.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号