首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
化学   1篇
物理学   21篇
  2010年   3篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  2000年   3篇
  1999年   2篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1990年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
2.
Recently introduced bioaffinity assay technology, ArcDia TPX, is based on two-photon excited fluorescence (TPE) and it enables separation-free ultra-sensitive immunoassays from microvolumes. Here we present syntheses of novel two-photon excitable fluorescent labeling reagents which have been specially designed to be used as label molecules in the ArcDia TPX assay technique. The labeling reagents are based on dipyrrylmetheneboron difluoride (dipyrrylmethene-BF2) chromophore, which have been substituted with aryl, heteroaryl or arylalkenyl chemical groups to extend the pi-electron conjugation. These substitutions results in a series of dipyrrylmethene-BF2 fluorophores with different photophysical properties. Dipyrrylmethene-BF2 fluorophores have been further substituted with a dipeptide linker unit and finally activated as succinimidyl esters to enable specific coupling with primary amino groups. The dipeptide linker serves as a spacer arm between the label and a target, and enhances the solubility of the label in aqueous solutions. Study of the chemical and photophysical performance of the new labeling reagents is described. The new labeling reagents exhibit high fluorescence quantum yields, and molar absorption coefficients. The results show that the new labels with the hydrophilic dipeptide linker unit provide large two-photon excitation cross-sections, high fluorescence quantum efficiency and good solubility in aqueous solutions. The results suggest that the novel dipyrrylmethene-BF2 labels are highly applicable to bioaffinity assays based on two-photon excitation of fluorescence.  相似文献   
3.
Measurements of synchrotron radiation emitted by 30-MeV runaway electrons in the TEXTOR-94 tokamak show that the runaway population decays after switching on neutral beam injection (NBI). The decay starts only with a significant delay, which decreases with increasing NBI heating power. This delay provides direct evidence of the energy dependence of runaway confinement, which is expected if magnetic modes govern the loss of runaways. Application of the theory by Mynick and Strachan [Phys. Fluids 24, 695 (1981)] yields estimates for the "mode width" (delta) of magnetic perturbations: delta<0.5 cm in Ohmic discharges, increasing to delta = 4.4 cm for 0. 6 MW NBI.  相似文献   
4.
5.
Molecular assays such as immunoassays are often performed using solid carriers and fluorescent labels. In such an assay format a question can be raised on how much the fluorescence of the label is influenced by the bio-affinity binding events and the solid carrier surface. Since changes in fluorescence intensity as labels bind to surfaces are notoriously difficult to quantify other approaches are preferred. A good indicator, independent of the fluorescence intensity of the label, is the fluorescence lifetime of the marker fluorophore. Changes in fluorescence lifetime reliably indicate the presence of dynamic quenching, energy transfer or other de-excitation processes. A microsphere based assay system is studied under two-photon excitation. Changes in fluorescence lifetime are studied as labeled protein conjugates bind on microsphere surfaces – both direct on the surface and with a few nanometer distance from the surface. Fluorescence signal is measured from individual polystyrene microspheres and the fluorescence lifetime histogram is simultaneously recorded. The results indicate that self-quenching and quenching by the polystyrene surface are both present in such a system. However, the effect of the surface can be avoided by increasing the distance between the surface and the label. Typical distances achieved by a standard sandwich type of assay, are already sufficient to overcome the surface induced quenching in fluorescence detection.  相似文献   
6.
Bose-Einstein condensation in a gas of sodium atoms   总被引:2,自引:0,他引:2  
  相似文献   
7.
A new lab-on-a-chip compatible binding assay platform is introduced. The platform combines dry-chemistry bioaffinity reagents and the recently introduced ArcDia TPX binding assay technique. The technique employs polymer microspheres as a solid phase reaction carrier, fluorescently labeled antibody conjugates, and detection of fluorescence emission from the surface of individual microspheres by two-photon excitation fluorescence. Signal response of the technique is independent of the reaction volume, thus the technique is particularly well suited for detection of bioaffinity reactions from miniature volumes. Performance of the new assay platform is studied by means of an immunometric assay of human alpha-fetoprotein (hAFP) in 384-plate format, and the results are compared to those of a corresponding wet-chemistry assay method. The results show that the ArcDia TPX detection technique can be combined with dry-chemistry reagents without compromises in assay performance. The microchip field has so far been characterized with a lack of microchip-compatible detection platforms which would allow cost-effective microchip design and sensitive bioaffinity detection. The presented detection technique is expected to provide a solution for this shortage.  相似文献   
8.
9.
A new approach to on-line oxygen isotope analysis has been developed which utilises existing elemental analyser and mass spectrometry technology to produce a sample of carbon dioxide gas for oxygen isotople analysis. The method relies on on-line high temperature pyrolysis of the sample over a carbon source followed by a rapid, non-contributive partial catalytic oxidation over nickel powder at between 550 and 600 degrees C. Initial results demonstrate both good precision (better than 0.2 per thousand) and accuracy for both cellulose and silver nitrate samples. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
10.
Using numerical simulations, the nonlinear transmission performance of polarization-division-multiplexed quadrature-phase-shift-keying (PDM-QPSK) coherent systems is studied. It is found that inter-channel cross-polarization modulation (XPolM) induced nonlinear polarization scattering can significantly degrade the transmission performance of PDM-QPSK coherent systems and change the perspective of dispersion management in optical coherent transmission systems. Some techniques to mitigate nonlinear polarization scattering in dispersion-managed PDM coherent transmission systems are discussed, including the use of time-interleaved return-to-zero (RZ) PDM formats, the use of periodic-group-delay PGD dispersion compensators, and the judicious addition of some polarization-mode-dispersion (PMD) in the transmission link. It is shown that if nonlinear polarization scattering can be well mitigated, a polarization multiplexed optical coherent transmission system with dispersion management could perform better than that without it.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号