首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   3篇
化学   22篇
力学   6篇
数学   4篇
物理学   6篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2015年   2篇
  2013年   3篇
  2012年   5篇
  2011年   1篇
  2010年   3篇
  2009年   5篇
  2008年   4篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2001年   1篇
  1988年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
1.

From a common point of view, quantum mechanics, psychology, and decision science disciplines try to predict how unruly systems (atomic particles, human behaviors, and decision makers’ choices) might behave in the future. Effective predicting outcome of a capacity allocation game under various allocation policies requires a profound understanding as how strategic reasoning of decision makers contributes to the financial gain of players. A quantum game framework is employed in the current study to investigate how performance of allocation policies is affected when buyers strategize over order quantities. The results show that the degree of being manipulative for allocation mechanisms is not identical and adopting adaptive quantum method is the most effective approach to secure the highest fill rate and profit when it is practiced under a reasonable range of entanglement levels.

  相似文献   
2.
The main objective of the current work is to introduce a new conceptual linearization strategy to improve the performance of a primitive shock‐capturing pressure‐based finite‐volume method. To avoid a spurious oscillatory solution in the chosen collocated grids, both the primitive and extended methods utilize two convecting and convected momentum expressions at each cell face. The expressions are obtained via a physical‐based discretization of two inclusive statements, which are constructed via a novel incorporation of the continuity and momentum governing equations. These two expressions in turn provide a strong coupling among the Euler conservative statements. Contrary to the primitive work, the linearization in the current work respects the definitions and essence of physics behind deriving the Euler governing equations. The accuracy and efficiency of the new formulation are then investigated by solving the shock tube as a problem with moving normal and expansion waves and the converging‐diverging nozzle as a problem with strong stationary normal shock. The results show that there is good improvement in performance of the primitive pressure‐based shock‐capturing method while its superior accuracy is not deteriorated at all. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   
3.
The carbon dioxide reforming of methane to synthesis gas under DC-pulsed plasma was investigated. The effects of specific input energy and feed ratio on the product distribution and also feed conversion was studied. At the input energy of about 11 eV/molecule per methane and/or carbon dioxide the feed conversion of 38% for CH4 and 28% for CO2 and product selectivity of 74% has been attained for H2 and CO at feed flow rate of 90 ml/min. The energy consumption in this work displays potential to further study and optimization of the process. The importance of the electron impact reactions in the process was discussed. The results show that by prudent tuning of system variables, the process be able to run in the way of synthesis gas, instead of hydrocarbon production.  相似文献   
4.
We extend a hybrid DSMC/Navier–Stokes (NS) approach to unify the DSMC and the NS simulators in one framework capable of solving the mixed non‐equilibrium and near‐equilibrium flow regions efficiently. Furthermore, we use a one‐way state‐based coupling (Dirichlet–Dirichlet boundary‐condition coupling) to transfer the required information from the continuum region to the rarefied one. The current hybrid DSMC–NS frame is applied to the hypersonic flows over nanoflat plate and microcylinder cases. The achieved solutions are compared with the pure DSMC and NS solutions. The results show that the current hybrid approach predicts the surface heat transfer rate and shear stress magnitudes very accurately. Some important conclusions can be drawn from this study. For example, although the shock wave region would be a non‐equilibrium region, it is not necessary to use a pure DSMC simulator to solve it entirely. This is important when the researchers wish to predict the surface properties such as velocity slip, temperature jump, wall heat flux rate, and friction drag magnitudes accurately. Our investigation showed that our hybrid solution time would be at least 40% (for the flat plate) and 35% (for the cylinder) of the time that must be spent by a pure DSMC solver to attain the same accuracy.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
5.
The numerical solution of the fluid flow governing equations requires the implementation of certain boundary conditions at suitable places to make the problem well‐posed. Most of numerical strategies exhibit weak performance and obtain inaccurate solutions if the solution domain boundaries are not placed at adequate locations. Unfortunately, many practical fluid flow problems pose difficulty at their boundaries because the required information for solving the PDE's is not available there. On the other hand, large solution domains with known boundary conditions normally need a higher number of mesh nodes, which can increase the computational cost. Such difficulties have motivated the CFD workers to confine the solution domain and solve it using artificial boundaries with unknown flow conditions prevailing there. In this work, we develop a general strategy, which enables the control‐volume‐based methods to close the outflow boundary at arbitrary locations where the flow conditions are not known prior to the solution. In this regard, we extend suitable conservative statements at the outflow boundary. The derived statements gradually detect the correct boundary conditions at arbitrary boundaries via an implicit procedure using a finite element volume method. The extended statements are validated by solving the truncated benchmark backward‐facing step problem. The investigation shows that the downstream boundary can pass through a recirculation zone without deteriorating the accuracy of the solution either in the domain or at its boundaries. The results indicate that the extended formulation is robust enough to be employed in solution domains with unknown boundary conditions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
6.
A new one-pot synthetic method for preparing core/shell YF3@SiO2 nanoparticles with different morphologies, from spherical to elongated structures ("pearl necklace"), is described; absorbance and photoluminescence spectroscopy reveals intrinsic but no extrinsic defects in the YF3.  相似文献   
7.
Quasi-critical fluctuations occur close to critical points or close to continuous phase transitions. In three-dimensional systems, precision tuning is required to access the fluctuation regime. Lowering the dimensionality enhances the parameter space for quasi-critical fluctuations considerably. This enables one to make use of novel properties emerging in fluctuating systems, such as giant susceptibilities, Casimir forces or novel quasi-particle interactions. Examples are discussed ranging from simple metal–adsorbate systems to unconventional superconductivity in iron-based superconductors.  相似文献   
8.
Core-silica shell nanoparticles were prepared in a "reverse" manner by nucleation and growth of Au cores within hollow silica nanospheres.  相似文献   
9.

Quantum-dot Cellular Automata (QCA) is emerging nanotechnology that can represent binary information using quantum cells without current flows. It is known as a promising alternative of Complementary Metal–Oxide Semiconductor (CMOS) to solve its drawbacks. On the other hand, the shift register is one of the most widely used practical devices in digital systems. Also, QCA has the potential to achieve attractive features than transistor-based technology. However, very small-scale and Nano-fabrication limits impose a hurdle to the design of QCA-based circuits and necessitate for fault-tolerant analysis is appeared. Therefore, the aim of this paper is to design and simulate an optimized a D-flip-flop (as the main element of the shift register) based on QCA technology, which is extended to design an optimized 2-bit universal shift register. This paper evaluates the performance of the designed shift register in the presence of the QCA fault. Collected results using QCADesigner tool demonstrate the fault-tolerant feature of the proposed design with minimum clocking and area consumption.

  相似文献   
10.
The solubility of hydrogen sulphide in three ionic liquids, viz. 1-hexyl-3-methylilmidazolium hexafluorophosphate ([hmim][PF6]), 1-hexyl-3-methylimidazolium tetrafluoroborate ([hmim][BF4]), and 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([hmim][Tf2N]), at temperatures ranging from 303.15 K to 343.15 K and pressures up to 1.1 MPa were determined. The solubility values were correlated using the Krichevsky–Kasarnovsky equation and Henry’s constants were obtained at different temperatures. Partial molar thermodynamic functions of solvation such as standard Gibbs free energy, enthalpy, and entropy were calculated from the solubility results. Comparison of the values obtained show that the solubility of H2S in these three ionic liquids was in the sequence: [hmim][BF4] > [hmim][PF6]  [hmim][Tf2N].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号