首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   2篇
化学   43篇
晶体学   3篇
力学   3篇
数学   6篇
物理学   31篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   5篇
  2010年   5篇
  2009年   3篇
  2008年   3篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1995年   2篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1979年   2篇
  1976年   1篇
  1972年   1篇
  1969年   1篇
  1968年   1篇
  1966年   1篇
  1938年   2篇
排序方式: 共有86条查询结果,搜索用时 750 毫秒
1.
Thee + e ?K + K ? cross section has been measured from about 750 events in the energy interval \(1350 \leqq \sqrt s \leqq 2400 MeV\) with the DM2 detector at DCI. TheK ± form factor |F F ±| cannot be explained by the ρ, ω, ? and ρ′(1600). An additional resonant amplitude at 1650 MeV has to be added as suggested by a previous experiment.  相似文献   
2.
The anomeric effect of the functional groups X = C?N, C?CH, COOH, COO?, O? CH3, NH2, and NH+3 has been studied with ab initio techniques. Geometry effects upon rotation around the central C? O bond in X? CH2? O? CH3 have been compared in the various compounds. The energy differences between the conformers with a gauche and trans (X? C? O? C) arrangement were calculated at the 6-31G* level in the fully optimized 4-21G geometries. Energy differences calculated at the 4-21G level appeared not to be reliable, especially for the groups X that contain non-sp3 hybridized atoms. The 6-31G* energy differences indicate a normal anomeric effect for X = COO?, O? CH3, and NH2(g+) (ca. 13 kJ/mol) and a small anomeric effect for X = COOH, C?N, and C?CH (ca. 6 kJ/mol). For X = NH2(t) and NH+3 a reverse anomeric effect occurs. These observations are in line with experimental results and evidence is given for a competition among various stereoelectronic interactions that occur at the same anomeric center. Geometry variations can be understood in terms of simple rules associated with anomeric orbital interactions. Trends followed when the group X is varied cannot be related in a straightforward way to the energy differences between the trans and the gauche forms in these compounds. Only the variation in the gauche torsion angle X? C? O? C follows roughly the same trend.  相似文献   
3.
The borling temperatures of perfluoro-2,4,6,9,11,13-hexaoxy-n-tetradecane, perfluoro-2,4,6,8,11,13,15,17-octaoxy-n-octadecane, and perfluoro-2,4,6,8,11,13,15,17,19,21-decaoxy-n-docosane were determined by comparative ebulliometry over the saturated vapor pressure range 6.2–101.6 kPa. The heat capacity of perfluoro-2,4,6,8,11,13,15,17-octaoxy-n-octadecane was studied by adiabatic calorimetry over the temperature range 5.3–371.2 K. The densities of the substances at 296–338 K were measured in quartz pycnometers. The data obtained were used to calculate the normal boiling points, enthalpies of vaporization, critical parameters, and thermodynamic functions (entropy, enthalpy, and Gibbs energy) of the polyethers studied.  相似文献   
4.
5.
6.
7.
8.
The development of new energy materials that can be utilized to make renewable and clean fuels from abundant and easily accessible resources is among the most challenging and demanding tasks in science today. Solar‐powered catalytic water‐splitting processes can be exploited as a source of electrons and protons to make clean renewable fuels, such as hydrogen, and in the sequestration of CO2 and its conversion into low‐carbon energy carriers. Recently, there have been tremendous efforts to build up a stand‐alone solar‐to‐fuel conversion device, the “artificial leaf”, using light and water as raw materials. An overview of the recent progress in electrochemical and photo‐electrocatalytic water splitting devices is presented, using both molecular water oxidation complexes (WOCs) and nano‐structured assemblies to develop an artificial photosynthetic system.  相似文献   
9.
10.
Contrary to expectation, the gauche conformer of 1,2-difluoroethane is more stable than the trans conformer in the gas phase. In order to understand the underlying causes of the “gauche effect”, a complete geometry relaxation was performed for the gauche and trans conformers of 1,2-difluoroethane with the 4-21G, 4-31G and 4-31G** basis sets. The 4-31G** optimized geometry of the gauche conformer compares well with the experimental values obtained from a number of electron-diffraction studies. A correction for the correlation energy, calculated by means of second-order Møller—Plesset perturbation theory with the 6-31G** basis set, proves to be essential to obtain a correct estimate of the energy difference between the gauche and trans conformers 1,2-difluoroethane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号