首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
物理学   6篇
  2012年   1篇
  2007年   1篇
  1992年   3篇
  1987年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
2.
3.
4.
For topologically nontrivial and very narrow bands, Coulomb repulsion between electrons has been predicted to give rise to a spontaneous fractional quantum-Hall (FQH) state in the absence of magnetic fields. Here we show that strongly correlated electrons in a t(2g)-orbital system on a triangular lattice self-organize into a spin-chiral magnetic ordering pattern that induces precisely the required topologically nontrivial and flat bands. This behavior is very robust and does not rely on fine-tuning. In order to go beyond mean field and to study the impact of longer-range interactions, we map the low-energy electronic states onto an effective one-band model. Exact diagonalization is then used to establish signatures of a spontaneous FQH state.  相似文献   
5.
The use of guided waves has recently drawn significant interest in the ultrasonic characterization of bone aiming at supplementing the information provided by traditional velocity measurements. This work presents a three-dimensional finite element study of guided wave propagation in intact and healing bones. A model of the fracture callus was constructed and the healing course was simulated as a three-stage process. The dispersion of guided modes generated by a broadband 1-MHz excitation was represented in the time-frequency domain. Wave propagation in the intact bone model was first investigated and comparisons were then made with a simplified geometry using analytical dispersion curves of the tube modes. Then, the effect of callus consolidation on the propagation characteristics was examined. It was shown that the dispersion of guided waves was significantly influenced by the irregularity and anisotropy of the bone. Also, guided waves were sensitive to material and geometrical changes that take place during healing. Conversely, when the first-arriving signal at the receiver corresponded to a nondispersive lateral wave, its propagation velocity was almost unaffected by the elastic symmetry and geometry of the bone and also could not characterize the callus tissue throughout its thickness. In conclusion, guided waves can enhance the capabilities of ultrasonic evaluation.  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号