首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
化学   11篇
力学   1篇
数学   3篇
物理学   5篇
  2022年   1篇
  2018年   2篇
  2015年   2篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
排序方式: 共有20条查询结果,搜索用时 62 毫秒
1.
We show the existence of nonthreshold bound states of (p,q) string networks and D3-branes, preserving 1/4 of the full type-IIB supersymmetry, interpreted as string networks "dissolved" in D3-branes. We also explicitly write down the expression for the mass density of the system and discuss the extension of the construction to other Dp-branes. Differences in our construction of string networks with the ones interpreted as dyons in N = 4 gauge theories are also pointed out.  相似文献   
2.
Advances in theory and algorithms for electronic structure calculations must be incorporated into program packages to enable them to become routinely used by the broader chemical community. This work reviews advances made over the past five years or so that constitute the major improvements contained in a new release of the Q-Chem quantum chemistry package, together with illustrative timings and applications. Specific developments discussed include fast methods for density functional theory calculations, linear scaling evaluation of energies, NMR chemical shifts and electric properties, fast auxiliary basis function methods for correlated energies and gradients, equation-of-motion coupled cluster methods for ground and excited states, geminal wavefunctions, embedding methods and techniques for exploring potential energy surfaces.  相似文献   
3.
Metal-acteylacetonates are important sublimable metal-organic precursors for metal-oxide thin film formation over solid preforms by MOCVD (Metal Organic Chemical Vapour Deposition) technique. Mixed-metal-acetylacetonates (MMAA) are suitable starting materials for mixed metal nano-oxidic thin film formation through such facile routes. Layered Double Hydroxides (LDH) of suitable metal ion combination can perform as appropriate starting base for neutralisation by enol form of 2,4-pentanedione or acteylacetonate tautomer ligands to obtain such MMAA. In this paper synthesis of composite crystals of Cu(II)/Cr(III) acetylacetonates (CCAA) is reported by the reaction of Cu–Cr-LDH with acetylacetone. The products were characterized by various different techniques. The surface area and pore volume analysis of the crystals showed the formation of nanopores in the compound. TEM analysis confirmed that the inner core of the nanoporous crystals of Cu(acac)2 was covered by coating of poorly crystallised Cr(acac)3 and they together form the composite crystals, and they together form the composite crystals. Due to eutectic mixture formation the melting point of CCAA lies in between the melting points of individual components Cu(acac)2 and Cr(acac)3 and shows sublimability, a property important for the formation of MOCVD films. The composite was used for CuCr2O4 spinel mixed oxide films formation over solid ceramic honeycomb monolithic substrates. Application prospects of the route in the field of catalysis is high as it can directly combine the benefits of mixed metal oxide catalysis and structured supports without the involvement of a third component. In this work the performance of such a catalytic device has been tested for low temperature decomposition of high Global Warming Potential (GWP) gas N2O to N2 and O2.  相似文献   
4.
The recently proposed new family of "double-hybrid" density functionals [Grimme, S. J. Chem. Phys. 2006, 124, 34108] replaces a fraction of the semi-local correlation energy by a non-local correlation energy expression that employs the Kohn-Sham orbitals in second-order many-body perturbation theory. These functionals have provided results of high accuracy over a wide range of properties but fail to accurately describe long-range van der Waals interactions. In this work, a distance-dependent scaling factor for the non-local correlation energy is introduced to address this problem, and two new double-hybrid density functionals are proposed. The new functionals are optimized with the finite cc-pVTZ basis on training sets of atomization energies and intermolecular interaction energies. They are compared against (scaled) second-order M?ller-Plesset perturbation theories and popular density functionals including the hybrid-GGA functional B3-LYP and the first double-hybrid functional (B2-PLYP). Tests are performed on an extensive set including reaction energies, barrier heights, weakly interacting complexes, transition-metal systems, molecular geometries, and harmonic vibrational frequencies. Within the cc-pVTZ atomic orbital basis, we have demonstrated the ability to find a parametrization scheme which is simultaneously able to describe thermochemistry and weakly bound systems with a satisfactory degree of accuracy.  相似文献   
5.
Molecular hydrogen is known to form stable, "nonclassical" sigma complexes with transition metal centers that are stabilized by donor-acceptor interactions and electrostatics. In this computational study, we establish that strong H2 sorption sites can be obtained in metal-organic frameworks by incorporating open transition metal sites on the organic linkers. Using density functional theory and energy decomposition analysis, we investigate the nature and characteristics of the H2 interaction with models of exposed open metal binding sites {half-sandwich piano-stool shaped complexes of the form (Arene)ML(3- n)(H2)n [M=Cr, Mo, V(-), Mn(+); Arene = C6H5X (X=H, F, Cl, OCH3, NH2, CH3, CF3) or C6H3Y2X (Y=COOH, X=CF3, Cl; L=CO; n=1-3]}. The metal-H2 bond dissociation energy of the studied complexes is calculated to be between 48 and 84 kJ/mol, based on the introduction of arene substituents, changes to the metal core, and of charge-balancing ligands. Thus, design of the binding site controls the H2 binding affinity and could be potentially used to control the magnitude of the H2 interaction energy to achieve reversible sorption characteristics at ambient conditions. Energy decomposition analysis illuminates both the possibilities and present challenges associated with rational materials design.  相似文献   
6.
7.
A simplified approach to treating the electron correlation energy is suggested in which only the alpha-beta component of the second order M?ller-Plesset energy is evaluated, and then scaled by an empirical factor which is suggested to be 1.3. This scaled opposite-spin second order energy (SOS-MP2), where MP2 is M?ller-Plesset theory, yields results for relative energies and derivative properties that are statistically improved over the conventional MP2 method. Furthermore, the SOS-MP2 energy can be evaluated without the fifth order computational steps associated with MP2 theory, even without exploiting any spatial locality. A fourth order algorithm is given for evaluating the opposite spin MP2 energy using auxiliary basis expansions, and a Laplace approach, and timing comparisons are given.  相似文献   
8.
Separate scaling of the same-spin and opposite spin contributions to the second-order M?ller-Plesset energy can yield statistically improved performance for a variety of chemical problems. If only the opposite spin contribution is scaled, it is also possible to reduce the computational complexity from fifth order to fourth order in system size, with very little degradation of the results. However neither of these scaled MP2 energies recovers the full MP2 result for the dispersion energy of nonoverlapping systems. This deficiency is addressed in this work by using a distance-dependent scaling of the opposite spin correlation energy. The resulting method is compared against the previously proposed scaled MP2 methods on a range of problems involving both short and long-range interactions.  相似文献   
9.
Coupled-cluster methods based on Brueckner orbitals are well known to resolve the problems of symmetry breaking and spin contamination that are often associated with Hartree-Fock orbitals. However, their computational cost is large enough to prevent application to large molecules. Here the authors present a simple approximation where the orbitals are optimized with the mean-field energy plus a correlation energy taken as the opposite-spin component of the second-order many-body correlation energy, scaled by an empirically chosen parameter (recommended as 1.2 for general applications). This "optimized second-order opposite-spin" (abbreviated as O2) method requires fourth-order computation on each orbital iteration. O2 is shown to yield predictions of structure and frequencies for closed-shell molecules that are very similar to scaled second-order Moller-Plesset methods. However, it yields substantial improvements for open-shell molecules, where problems with spin contamination and symmetry breaking are shown to be greatly reduced.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号