首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   0篇
化学   39篇
物理学   18篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   4篇
  2010年   3篇
  2008年   5篇
  2007年   3篇
  2006年   9篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1984年   2篇
  1983年   2篇
  1980年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1969年   1篇
排序方式: 共有57条查询结果,搜索用时 46 毫秒
1.
To clarify the mechanisms of transport of ions and water molecules in perfluorosulfonated ionomer membranes for fuel cells, the temperature dependence of their transport behaviors was investigated in detail. Two types of Flemion membranes having different equivalent weight values (EW) were utilized along with Nafion 117 as the perfluorinated ionomer membranes, and H-, Li-, and Na-form samples were prepared for each membrane by immersion in 0.03 M HCl, LiCl, and NaCl aqueous solutions, respectively. The ionic conductivity, water self-diffusion coefficient (D(H)(2)(O)), and DSC were measured in the fully hydrated state as a function of temperature. The ionic conductivity of the membranes was reflected by the cation transport through the intermediary of water. Clearly, H(+) transports by the Grotthuss (hopping) mechanism, and Li(+) and Na(+) transport by the vehicle mechanism. The differences of the ion transport mechanisms were observed in the activation energies through the Arrhenius plots. The D(H)(2)(O) in the membranes exhibited a tendency similar to the ionic conductivity for the cation species and the EW value. However, no remarkable difference of D(H)(2)(O) between H- and the other cation-form membranes was observed as compared with the ionic conductivity. It indicates that water in each membrane diffuses almost in a similar way; however, H(+) transports by the Grotthuss mechanism so that conductivity of H(+) is much higher than that of the other cations. Moreover, the D(H)(2)(O) and DSC curves showed that a part of water in the membranes freezes around -20 degrees C, but the nonfreezing water remains and diffuses below that temperature. This fact suggests that completely free water (bulk water) does not exist in the membranes, and water weakly interacting with the cation species and the sulfonic acid groups in secondary and higher hydration shells freezes around -20 degrees C, while strongly binding water in primary hydration shells does not freeze. The ratio of freezing and nonfreezing water was estimated from the DSC curves. The D(H)(2)(O) in the membranes was found to be influenced by the ratio of freezing and nonfreezing water. DFT calculation of the interaction (solvation) energy between the cation species and water molecules suggested that the water content and the ratio of freezing and nonfreezing water depend strongly on the cation species penetrated into the membrane.  相似文献   
2.
A glucose electrode was composed of a dissolved oxygen electrode and an immobilized glucose oxidase membrane prepared by plasma polymerization of propargyl alcohol as a monomer. Fairly good precision of the electrode response to sample solutions was obtained by measurements using the steady-state method or the reaction rate method. Activity of the glucose oxidase immobilized within the membrane and mounted on the electrode lasted for 50 consecutive measurements over 5 days, and, if the membrane was stored in a buffer solution of pH 7.0 at a temperature of 0°C, the activity was preserved for more than 2 months. Such immobilization of the glucose oxidase with the plasma polymer effectively suppressed interference from Cu2+ions, which would seriously interrupt oxidation of the glucose in homogeneous solutions, in the sample solutions.  相似文献   
3.
The intermolecular interaction energies of nine ion pairs of room temperature ionic liquids were studied by MP2/6-311G level ab initio calculations. The magnitude of the interaction energies of 1-ethyl-3-methylimidazolium (emim) complexes follows the trend CF(3)CO(2)(-) > BF(4)(-) > CF(3)SO(3)(-) > (CF(3)SO(2))(2)N(-) approximately PF(6)(-) (-89.8, -85.2, -82.6, -78.8, and -78.4 kcal/mol, respectively). The interaction energies of BF(4)(-) complexes with emim, ethylpyridinium (epy), N-ethyl-N,N,N-trimethylammonium ((C(2)H(5))(CH(3))(3)N), and N-ethyl-N-methylpyrrolidinium (empro) are not very different (-85.2, -82.8, -84.6, and -84.4 kcal/mol, respectively), while the size of the orientation dependence of the interaction energies follows the trend emim > epy approximately (C(2)H(5))(CH(3))(3)N > empro. Comparison with the experimental ionic conductivities shows that the magnitude and directionality of the interaction energy of the ion pairs play a crucial role in determining the ionic dissociation/association dynamics in the ionic liquids. The electrostatic interaction is the major source of attraction between ions. The induction contribution is small but not negligible. The hydrogen bonding with the C(2)-H of imidazolium is not essential for the attraction in the ion pair. The interaction energy of the BF(4)(-) complex with 1-ethyl-2,3-dimethylimidazolium (em2im) (-81.8 kcal/mol) is only 4% smaller than that of the emim complex.  相似文献   
4.
Abstract— The absorption and emission properties of the photochemically produced dipyrimidine adducts are analyzed at 300 and 77K. Those adducts which have a saturated C(5)—C(6) bond in the pyrimidin-2,4-dione (Pyr) ring and a pyrimidin-2-one (Pyo) ring behave spectroscopically as a substituted Pyo. However, those consisting of one Pyr and one Pyo moiety can be considered as bichromophoric molecules and their spectral properties can be understood in terms of the relative torsional angle between the two rings. The adduct with the most bulky substituents ortho to the torsional bond bears the largest torsional angle and exhibits relatively independent absorption and emission phenomenon. At the other extreme, those adducts with no substituents at this position exist as almost planar molecules and exhibit considerable overlap of absorption bands as well as room temperature fluorescence which, in certain cases, is characteristic of intramolecular exciplex interaction. Using inter-ring torsional angles of ortho-substituted biphenyl molecules as a basis for comparative calculation, quantitative estimates of the torsional angles in dipyrimidine adducts at 300K have been made.  相似文献   
5.
6.
In this paper, the recently developed “Water-PRESS” method of water suppression [W. S. Price and Y. Arata (1996),J. Magn. Reson. B112,190] in which homospoil pulses are used to manipulate the effects of radiation damping on the water resonance and thereby selectively alter the effective relaxation times of the water resonance with respect to the solute (e.g., biological macromolecules) resonances is further developed and applied. In the present work, methods for optimization in terms of degree of water suppression and in temporal terms (important for the application of Water-PRESS to multidimensional experiments) are considered so that recycle delays of less than 2.3 s (including the acquisition time) are possible. Also, a simple modification which allows the observation of solute resonances with relaxation times similar to that of the water resonance is presented. Finally, the inclusion into more complicated pulse sequences is also discussed. Experimental examples using aqueous samples of lysozyme and immunoglobulin are given. Compared to most other NMR water suppression techniques, this method is extremely simple to implement and optimize and does not require accurately calibrated RF pulses or perfect lineshape.  相似文献   
7.
The present systematic Raman scattering experiments reveal the phason and amplitudon of the charge density wave (CDW) mode in the charge stripes of La(2-x)Sr(x)CuO4. Only about 15% of the electronic density of states condenses into the CDW state. The symmetries of the CDW modes change by the rotation of the stripes at the insulator-metal transition. The energy of the phason is finite at 0.06 < or = x < or = 0.1 and zero at x = 0.035 and 0.115 < or = x < or = 0.135, which suggests that the CDW is commensurate at 0.06 < or = x < or = 0.1 and incommensurate otherwise. The zero-energy phason seems to reduce T(c) at x = 1/8.  相似文献   
8.
9.
A room-temperature ionic liquid (RTIL) of a quaternary ammonium cation having an ether chain, N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethylsulfonyl)amide (DEME-TFSA), is a candidate for use as an electrolyte of lithium secondary batteries. In this study, the electrochemical ionic conductivity, sigma, of the neat DEME-TFSA and DEME-TFSA-Li doped with five different concentrations of lithium salt (LiTFSA) was measured and correlated with NMR measurements of the diffusion coefficients D and the spin-lattice relaxation times T1 of the individual components DEME (1H), TFSA (19F), and lithium ion (7Li). The ion conduction of charged ions can be activated with less thermal energy than ion diffusion which contains a contribution from paired ions in DEME-TFSA. In the doped DEME-TFSA-Li samples, the sigma and D values decreased with increasing salt concentration, and within the same sample generally DLi相似文献   
10.
The systematic control over surface chemistry is a long-standing challenge in biomedical and nanotechnological applications for graphitic materials. As a novel approach, we utilize graphite-binding dodecapeptides that self-assemble into dense domains to form monolayer-thick long-range-ordered films on graphite. Specifically, the peptides are rationally designed through their amino acid sequences to predictably display hydrophilic and hydrophobic characteristics while maintaining their self-assembly capabilities on the solid substrate. The peptides are observed to maintain a high tolerance for sequence modification, allowing control over surface chemistry via their amino acid sequence. Furthermore, through a single-step coassembly of two differently designed peptides, we predictably and precisely tune the wettability of the resulting functionalized graphite surfaces from 44° to 83°. The modular molecular structures and predictable behavior of short peptides demonstrated here give rise to a novel platform for functionalizing graphitic materials that offers numerous advantages, including noninvasive modification of the substrate, biocompatible processing in an aqueous environment, and simple fusion with other functional biological molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号