首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   2篇
物理学   4篇
  2021年   1篇
  2018年   2篇
  2013年   1篇
  2012年   1篇
  1977年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Svetlakova  A. V.  Mendez  M. Sanchez  Tuchin  E. S.  Khodan  A. N.  Traore  M.  Azouani  R.  Kanaev  A.  Tuchin  V. V. 《Optics and Spectroscopy》2021,129(8):846-850
Optics and Spectroscopy - We study the photocatalytic activity of nanocomposites based on θ-phase alumina (Al2O3) with different TiO2 concentrations for heterogeneous photocatalysis and...  相似文献   
2.
The work presents studies on the microstructure and mesostructure of nanostructured aluminum oxyhydroxide formed as a high porous monolithic material through the surface oxidation of aluminum liquidmetal solution in mercury in a temperature- and humidity-controlled air atmosphere. The methods of X-ray diffraction analysis, thermal analysis, the low temperature adsorption of nitrogen vapors, transmission electron microscopy, small-angle and very small-angle neutron scattering, and small-angle X-ray scattering are used for comprehensive investigation of the samples synthesized at 25°С as well as that annealed at temperatures up to 1150°C. It is found that the structure of the monolithic samples can be described within the framework of a three-level model involving primary heterogeneities (typical length scale of rc ≈ 9–19 Å), forming fibrils (cross-sectional radius R ≈ 36–43 Å and length L ≈ 3200–3300 Å) or lamellae (thickness T ≈ 110 Å and width W ≈ 3050 Å) which, in turn, are integrated into large-scale aggregates (typical size R c ≈ 1.25–1.4 μm) with an insignificant surface roughness. It is shown that a high specific surface (~200 m2/g) typical for the initial sample is maintained upon its thermal annealing up to 900°С, and it decreases to 100 m2/g after heat treatment at 1150°С due to fibrillary agglomeration.  相似文献   
3.
We present a study on the chemical and structural transformations in highly porous monolitic materials consisting of the nanofibrils of aluminum oxyhydroxides (NOA, Al2O3·nH2O) in the temperature range 20–1700 °C. A remarkable property of the NOA material is the preservation of the monolithic state during annealing over the entire temperature range, although the density of the monolith increases from ~0.02 up to ~3 g/cm3, the total porosity decreases from 99.3 to 25% and remains open up to 4 h annealing at the temperature ~1300 °C. The physical parameters of NOA monoliths such as density, porosity, specific area were studied and a simple physical model describing these parameters as the function of the average size of NOA fibrils—the basic element of 3D structure—was proposed. The observed thermally induced changes in composition and structure of NOA were successfully described and two mechanisms of mass transport in NOA materials were revealed. (i) At moderate temperatures (T?≤?800 °C), the mass transport occurs along a surface of amorphous single fibril, which results in a weak decrease of the length-to-diameter aspect ratio from the initial value ~24 till ~20; the corresponding NOA porosity change is also small: from initial ~99.5 to 98.5%. (ii) At high temperatures (T >?800 °C), the mass transport occurs in the volume of fibrils, that results in changes of fibrils shape to elliptical and strong decrease of the aspect ratio down to ≤?2; the porosity of NOA decreases to 25%. These two regimes are characterized by activation energies of 28 and 61 kJ/mol respectively, and the transition temperature corresponds to the beginning of γ-phase crystallization at 870 °C.
Graphical abstract
  相似文献   
4.
Conclusions Studies under the scanning electron microscope have shown that the cellulose acetate membranes used for reverse osmosis are high-molecular-weight condensation structures of the cellular type resulting from the dropwise separation of a new liquid phase under diffusional enrichment of the polymer solution by water, the solvent. The pore diameter, and the total pore volume, both diminish on approaching the membrane surface; the diffuse character of the active layer traces back to the concentration distribution resulting from vaporization of acetone, the volatile component, from the acetone- formamide cellulose acetate solution.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 1, pp. 111–115, January, 1977.  相似文献   
5.
The mechanisms determining the antiicing protection imparted by superhydrophobic coatings to the aluminum and steel surfaces of structural parts and control equipment of aircrafts are discussed. The results of testing at negative surface temperatures and high velocities of air—vapor flow demonstrated that application of superhydrophobic coatings produced by various methods provides a substantial mitigation of ice accretion compared to uncoated metal surfaces. The superhydrophobic coatings on aluminum surfaces completely prevent the formation of ice at moderate flow velocities of up to 40 m s?1. At higher flow rates under conditions of ice formation on the test desk, the effect of periodic self-cleaning of the superhydrophobic surface was detected. Superhydrophobic coatings on stainless-steel parts of air pressure sensor also demonstrate explicit antiicing effect associated with the reduced heating power required to completely prevent ice formation on the sensor surface.  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号