首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   8篇
物理学   1篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2013年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Herein, synthesis of a series of naphtho[2,3-f]quinolin-13-one and naphtho[2,3-a]acridin-1(2H)-one derivatives directly by one-pot multi-component reaction of 1,3-dicarbonyl compounds (1,3-indanedione/1,3-cyclohexanedione), 2-aminoantharacene/2-naphthylamine and various substituted aldehydes under solvent-free conditions using heteropoly-11-molybdo-1-vanadophosphoric acid supported on montmorillonite K-10 clay catalyst (10% PVMoK-10) is reported. The successful formation of naphtho[2,3-f]quinolin-13-one and naphtho[2,3-a]acridin-1(2H)-one derivatives was confirmed by various spectroscopic techniques. This study offers a green approach for the synthesis of novel quinolinone derivatives.  相似文献   
2.
One-pot multi-component synthesis of N,N′-alkylidene bisamides, 2,4,5-trisubstituted imidazoles and 1,2,4,5-tetrasubstituted imidazoles in the presence of catalytic material heteropoly-11-tungsto-1-vanadophosphoric acid (HPV) supported on activated natural clay for about 20% (HPVAC-20) under solvent-free reaction condition have been achieved. Green heterogeneous reaction condition, simple workup procedure, short reaction time, high yield of products, and reusability of the catalyst are the advantages of this protocol.  相似文献   
3.
4.
Theoretical studies have shown that surface terminations, such as MAI or PbI layers, greatly affect the environmental stability of organic–inorganic perovskite. However, until now, there has been little effort to experimentally detect the existence of MAI or PbI terminations on MAPbI3 grains, let alone disclose their effects on the humidity degradation pathway of perovskite solar cell. Here, we successfully modified and detected the surface terminations of MAI and PbI species on polycrystalline MAPbI3 films. MAI-terminated perovskite film followed the moisture degradation process from MAPbI3 to hydrate MAPbI3⋅H2O and then into PbI2, with penetration of water molecules being the main driving force leading to the degradation of MAPbI3 layer by layer. In contrast, for the PbI-terminated perovskite film in a humid atmosphere, a deprotonation degradation pathway was confirmed, in which the film preferentially degraded directly from MAPbI3 into PbI2, here the iodine defects played a key role in promoting the dissociation of water molecules into OH and further catalyzing the decomposition of perovskite.  相似文献   
5.
Dihydropyrimidinones/thiones (DHPM’s) have been prepared by one-pot condensation of methyl acetoacetate, aldehydes, urea/thiourea in the presence of heteropoly-11-tungsto-1-vanadophosphoric acid, H4[PVW11O40]?·?32H2O, (HPV) supported on activated natural clay (HPVAC) under solvent-free reaction condition have been proposed. The DHPM derivatives were identified through elemental analysis and melting point measurements and characterized by FT-IR, 1H-NMR, 13C-NMR spectroscopic methods.  相似文献   
6.
One-pot three-component condensation reaction of two moles of indole and one mole of aromatic aldehyde for the synthesis of bis(indolyl)methanes in the presence of new catalytic material, heteropoly-11-tungsto-1-vanadophosphoric acid, H4[PVVW11O40] (HPV) supported on activated natural clay under solvent-free reaction condition has been proposed. The catalysts were prepared by incipient wetness impregnation method. The physicochemical characterizations of the HPV (20%) supported on natural clay (HPVAC-20) have also been discussed. Solvent-free heterogeneous reaction condition, simple workup procedure, short reaction time, high yield of products, and reusability of the catalyst are the advantages of the protocol.  相似文献   
7.
Kinetics of the oxidation of thiourea (tu) by heteropoly-α2-17-tungsto-1-vanadodiphosphate anion, α2-[P2VVW17O62]7?, have been studied spectrophotometrically in aqueous acidic medium at 25 °C. At low pH (2.4–3.0), the neutral form of tu is the only reactive species. At higher pH (4.2–4.9), both neutral and deprotonated forms of tu participate in the reaction. The observed mixed-order kinetics suggest two parallel reactions: one in which the order in [tu] is unity, and a second in which it is two. In both cases, the order in [α2-[P2VVW17O62]7?] is unity. Based on the kinetic studies, a mechanism is proposed, in which a second-order proton-coupled electron transfer involving NH2CSNH2 and α2-[P2VVW17O62]7? proceeds through a sequential electron transfer, followed by proton transfer such that the reaction is an “activation-controlled” outer-sphere electron transfer process. By applying the Marcus equation, the self-exchange rate constants for the couples \({\text{NH}}_{2} {\text{CSNH}}_{2}^{ \cdot + }\)/NH2CSNH2 and α2-[P2VVW17O62]7?2-[P2VIVW17O62]8? were evaluated.  相似文献   
8.
The authors report on the preparation of a hollow-structured cobalt ferrite (CoFe2O4) nanocomposite for use in a non-enzymatic sensor for hydrogen peroxide (H2O2). Silica (SiO2) nanoparticles were exploited as template for the deposition of Fe3O4/CoFe2O4 nanosheets, which was followed by the removal of SiO2 template under mild conditions. This leads to the formation of hollow-structured Fe3O4/CoFe2O4 interconnected nanosheets with cubic spinel structure of high crystallinity. The material was placed on a glassy carbon electrode where it acts as a viable sensor for non-enzymatic determination of H2O2. Operated at a potential of ?0.45 V vs. Ag/AgCl in 0.1 M NaOH solution, the modified GCE has a sensitivity of 17 nA μM?1 cm?2, a linear response in the range of 10 to 1200 μM H2O2 concentration range, and a 2.5 μM detection limit. The sensor is reproducible and stable and was applied to the analysis of spiked urine samples, where it provided excellent recoveries.
Graphical abstract Schematic of a cobalt ferrite (CoFe2O4) hollow structure for use in electrochemical determination of H2O2. The sensor shows a low detection limit, a wide linear range, and excellent selectivity for H2O2.
  相似文献   
9.

In biomedical applications, Cu2O nanoparticles are of great interest. The bioengineered route is eco-friendly for the synthesis of nanoparticles. Therefore, in the present study, there is an attempt to synthesis Cu2O nanoparticles using Datura metel L. The synthesized nanoparticles were characterized by UV–Vis, XRD, and FT-IR. UV–Vis results suggest the presence of hyoscyamine, atropine in Datura metel L, and also, nanoparticles formation has been confirmed by the presence of absorption peak at 790 nm. The average crystallite size (19.56 nm) was obtained by XRD. FT-IR was also used to confirm the different functional groups. Fourier Power Spectrum was also employed to examine the synthesized nanomaterials spectrum data to emphasize the peak of the prominent frequencies. Density functional theory (DFT) was also utilized to assess the energy of the substance over time, which appears to indicate a stable molecule. Furthermore, calculated energies, thermodynamic properties (such as enthalpies, entropies, and Gibbs-free energies), modeled structures of complexes, crystals, and clusters, and predicted yields, rates, and regio- and stereospecificity of reactions were all in good agreement with experimental results. Overall, the results show that the successful production of Cu2O nanoparticles with Datura metel L. corresponds to theoretical research.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号