首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   1篇
物理学   47篇
  2015年   2篇
  2014年   1篇
  2012年   5篇
  2011年   7篇
  2010年   2篇
  2009年   1篇
  2008年   8篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
排序方式: 共有47条查询结果,搜索用时 171 毫秒
1.
We present an analytical evaluation of radiative corrections in exotic atoms induced by the one-loop electronic vacuum polarization. We evaluate corrections to the energy levels, to the wave function (at the origin) and to the hyperfine structure. We treat all corrections analytically within a non-relativistic approximation. Agreement is found with a few available numerical results. The analytical treatment allows to determine the asymptotic forms of the corrections in the limit of a small atomic radius, which for the atomic systems considered corresponds to a large mass of the constituent particle as compared to the electron mass. The asymptotics can be verified using the effective charge approach. Received: 28 January 1998 / Accepted: 13 March 1998  相似文献   
2.
Within a systematic approach based on nonrelativistic quantum electrodynamics, we derive the one-loop self-energy correction of order alpha(Z alpha)(4) to the bound-electron g factor. In combination with numerical data, this analytic result improves theoretical predictions for the self-energy correction for carbon and oxygen by an order of magnitude. Basing on one-loop calculations, we obtain the logarithmic two-loop contribution of order alpha(2)(Z alpha)(4)ln([(Z alpha)(-2)] and the dominant part of the corresponding constant term. The results obtained improve the accuracy of the theoretical predictions for the 1S bound-electron g factor and influence the value of the electron mass determined from g-factor measurements.  相似文献   
3.
We discuss radiative corrections to an atomic two-level system subject to an intense driving laser field. It is shown that the Lamb shift of the laser-dressed states, which are the natural state basis of the combined atom-laser system, cannot be explained in terms of the Lamb shift received by the atomic bare states which is usually observed in spectroscopic experiments. In the final part, we propose an experimental scheme to measure these corrections based on the incoherent resonance fluorescence spectrum of the driven atom.  相似文献   
4.
Atomic mass differences are influenced by QED corrections, and a reliable understanding of these corrections is therefore of importance for the current and next generation of high-precision mass determinations based on Penning traps. We present a numerical evaluation of the self-energy correction, which is the dominant contribution to the Lamb shift, in the region of low nuclear charge. Our calculation is nonperturbative in the binding field and has a numerical uncertainty of 0.8Hz in atomic hydrogen for the ground state and of 1.0Hz for L-shell states (2S1/2, 2P1/2, and 2P3/2). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
5.
We apply the density matrix theory to re-investigate the radiative electron capture into heavy ions with one valence electron. Attention has been paid particularly to the magnetic sublevel population of the residual ions, as described in terms of alignment parameters. Simple method, based on an independent particle model, which takes into account the Pauli principle, is proposed for evaluating the alignment of the excited ionic states. By making use of this method, detailed calculations are performed for electron capture into (initially) hydrogen-like and lithium-like europium, gold and uranium ions, and are compared with the results of the multiconfiguration Dirac-Fock approach.As seen from the calculations and from the comparison with available experimental results, the independent particle model provides a good estimate for the alignment parameters of few-electron heavy ions. Therefore, our simple model may help to understand the basic properties of the X-ray emission from heavy, few-electron ions without the need for invoking sophisticated MCDF calculations.  相似文献   
6.
With the advent of high-precision frequency combs that can bridge large frequency intervals, new possibilities have opened up for the laser spectroscopy of atomic transitions. Here, it is shown that laser spectroscopic techniques can also be used to determine the ground-state g factor of a bound electron. The proposal is based on a double-resonance experiment, where the spin state of a ground-state electron is constantly being read out by laser excitation to the atomic L shell, while the spin flip transitions are being induced simultaneously by a resonant microwave field, leading to the detection of the quantum jumps between the ground-state Zeeman sublevels. The magnetic moments of electrons in light hydrogen-like ions could thus be measured with advanced laser technology. Corresponding theoretical predictions are also presented. The text was submitted by the authors in English.  相似文献   
7.
The thermal friction force acting on an atom moving relative to a thermal photon bath has recently been calculated on the basis of the fluctuation-dissipation theorem. The thermal fluctuations of the electromagnetic field give rise to a drag force on an atom provided one allows for dissipation of the field energy via spontaneous emission. The drag force exists if the atomic polarizability has a nonvanishing imaginary part. Here, we explore alternative derivations. The damping of the motion of a simple harmonic oscillator is described by radiative reaction theory (result of Einstein and Hopf), taking into account the known stochastic fluctuations of the electromagnetic field. Describing the excitations of the atom as an ensemble of damped harmonic oscillators, we identify the previously found expressions as generalizations of the Einstein-Hopf result. In addition, we present a simple explanation for blackbody friction in terms of a Doppler shift of the thermal radiation in the inertial frame of the moving atom: The atom absorbs blue-shifted photons from the front and radiates off energy in all directions, thereby losing energy. The original plus the two alternative derivations provide for additional confirmation of an intriguing quantum friction effect, and leave no doubt regarding its existence.  相似文献   
8.
In this second part of the treatment of instantons in quantum mechanics, the focus is on specific calculations related to a number of quantum mechanical potentials with degenerate minima. We calculate the leading multi-instanton contributions to the partition function, using the formalism introduced in the first part of the treatise [Ann. Phys. (N. Y.) (previous issue) (2004)]. The following potentials are considered: (i) asymmetric potentials with degenerate minima, (ii) the periodic cosine potential, (iii) anharmonic oscillators with radial symmetry, and (iv) a specific potential which bears an analogy with the Fokker-Planck equation. The latter potential has the peculiar property that the perturbation series for the ground-state energy vanishes to all orders and is thus formally convergent (the ground-state energy, however, is non-zero and positive). For the potentials (ii), (iii), and (iv), we calculate the perturbative B-function as well as the instanton A-function to fourth order in g. We also consider the double-well potential in detail, and present some higher-order analytic as well as numerical calculations to verify explicitly the related conjectures up to the order of three instantons. Strategies analogous to those outlined here could result in new conjectures for problems where our present understanding is more limited.  相似文献   
9.
Atomic binding energies are calculated at utmost precision. A report on the current status of Lamb-shift predictions for hydrogenlike ions, including all quantum electrodynamical corrections to first and second order in the fine structure constant α is presented. All relevant nuclear effects are taken into account. High-precision calculations for the Lamb shift in hydrogen are presented. The hyperfine structure splitting and the g factor of a bound electron in the strong electromagnetic field of a heavy nucleus is considered. Special emphasis is also put on parity violation effects in atomic systems. For all systems possible investigations beyond precision tests of quantum electrodynamics are considered. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号