首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   0篇
化学   19篇
力学   1篇
数学   6篇
物理学   53篇
  2021年   1篇
  2012年   1篇
  2011年   7篇
  2010年   2篇
  2009年   2篇
  2008年   6篇
  2007年   12篇
  2006年   13篇
  2005年   6篇
  2004年   7篇
  2003年   9篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1993年   2篇
  1992年   1篇
  1988年   1篇
  1981年   1篇
排序方式: 共有79条查询结果,搜索用时 922 毫秒
1.
The (13)C natural abundance of CO(2) respired by plants has been used in the laboratory to examine the discrimination processes that occur during respiration. Currently, field measurements are being expanded to interpret the respiration delta(13)C signature measured at ecosystem and global levels. In this context, forests are particularly important to consider as they represent 80% of the continental biomass. The objective of this investigation was to compare four methods of sampling the CO(2) respired by trunks for the determination of its carbon isotope composition: three in situ methods using chambers placed on the trunk, and one destructive method using cores of woody tissues. The in situ methods were based either on a Keeling plot approach applied at the tissue level or on an initial flush of the chamber with nitrogen or with CO(2)-free air. In parallel, we investigated the possibility of an apparent discrimination during tissue respiration by comparing the delta(13)C signature of the respired CO(2) and that of the organic matter. The study was performed on six tree species widely distributed in temperate and mediterranean areas. The four methods were not significantly different when overall means were considered. However, considering the individual data, the Keeling plot approach and the nitrogen flush methods gave fairly homogeneous results, whereas the CO(2)-free air method produced more variable results. The core method was not correlated with any of the chamber methods. Regardless of the methodology, the respired CO(2) generally was enriched in (13)C relative to the total organic matter. This apparent enrichment during respiration was variable, reaching as much as 3-5 per thousand. This study showed that, on the whole, the different sampling techniques gave similar results, but one should be aware of the variability associated with each method.  相似文献   
2.
3.
4.
Analytical HPLC methods using derivatized cellulose and amylose chiral stationary phases used in normal and reversed-phase modes were developed for the diastereoisomeric separation of mononucleotide prodrugs (pronucleotides) of 3'-azido-2',3'-dideoxythymidine (AZT). The resolutions were performed with two silica-based celluloses using normal and reversed-phase methodologies: Tris-3,5-dimethylphenylcarbamate (Chiralcel OD-H and Chiracel OD-RH) and Tris-methylbenzoate (Chiralcel OJ and OJ-R). Two amyloses phases, Tris-3,5-dimethylphenylcarbamate (Chiralpak AD) and Tris-(S)-1-phenylethylcarbamate (Chiralpak AS), were used in normal-phase mode. Additionally, we developed separation using two stationary phases with immobilized cyclodextrins in reversed-phase and polar-organic modes. The mobile phase and the chiral stationary phase were varied to achieve the best resolution. Different types and concentration of aliphatic alcohols, acetonitrile or water in the mobile phase were also tested for the different separation modes. An optimal baseline separation (Rs > 1.5) was readily obtained with all silica-based celluloses and amyloses using a normal-phase methodology. The different columns gave complementary results in term of resolution. Limits of detection and quantification were 0.12-0.20 and 0.40-0.67 microm, respectively. This analytical method was applied in a preliminary study for the pronucleotide 2 quantification in cellular extract.  相似文献   
5.
High-speed MAS (19)F NMR spectra are recorded and reconstructed for 10 compounds from BaF(2)-AlF(3) and CaF(2)-AlF(3) binary systems which leads to the determination of 77 isotropic (19)F chemical shifts in various environments. A first attribution of NMR lines is performed for 8 compounds using a superposition model as initially proposed by B. Bureau et al. The phenomenological parameters of this model are then refined to improve the NMR line assignment. A satisfactory reliability is reached with a root-mean-square (RMS) deviation between calculated and measured values equal to 6 ppm. The refined parameters are then successfully tested on alpha-BaCaAlF(7) whose structure was recently determined. Finally, the isotropic chemical shift ranges are defined for shared, unshared, and "free" fluorine atoms encountered in the investigated binary systems. So, the fluorine surroundings can be deduced from the NMR line positions in compounds whose structure is unknown. Such an approach can also be applied to fluoride glasses.  相似文献   
6.
The development of tailored materials for specific applications is an active field of research in chemistry, material science and drug discovery. The number of possible molecules obtainable from a set of atomic species grow exponentially with the size of the system, limiting the efficiency of classical sampling algorithms. On the other hand, quantum computers can provide an efficient solution to the sampling of the chemical compound space for the optimization of a given molecular property. In this work, we propose a quantum algorithm for addressing the material design problem with a favourable scaling. The core of this approach is the representation of the space of candidate structures as a linear superposition of all possible atomic compositions. The corresponding ‘alchemical’ Hamiltonian drives the optimization in both the atomic and electronic spaces leading to the selection of the best fitting molecule, which optimizes a given property of the system, e.g., the interaction with an external potential as in drug design. The quantum advantage resides in the efficient calculation of the electronic structure properties together with the sampling of the exponentially large chemical compound space. We demonstrate both in simulations and with IBM Quantum hardware the efficiency of our scheme and highlight the results in a few test cases. This preliminary study can serve as a basis for the development of further material design quantum algorithms for near-term quantum computers.

‘Alchemical’ quantum algorithm for the simultaneous optimisation of chemical composition and electronic structure for material design. By exploiting quantum mechanical principles this approach will boost drug discovery in the near future.  相似文献   
7.
We have measured the real space trajectory of the ultrafast magnetization dynamics in ferromagnetic metals induced by femtosecond optical pulses. Our approach allows the observation of the initial change of the modulus and orientation of the magnetization, occurring within a few hundreds of femtoseconds, as well as its subsequent precession and damping around the effective field. The role of the magnetocrystalline anisotropy shows up in the magnetization reorientation occurring during the electron-lattice relaxation. In addition, we propose a model which takes into account the initial demagnetization in the Bloch formalism describing the magnetization dynamics.  相似文献   
8.
A new method to measure and analyze the time and spectrally resolved polarimetric response of magnetic materials is presented. It allows us to study the ultrafast magnetization dynamics of a CoPt3 ferromagnetic film. The analysis of the pump-induced rotation and ellipticity detected by a broad spectrum probe beam shows that magneto-optical signals predominantly reflect the spin dynamics in ferromagnets.  相似文献   
9.
Optical seeding of plasma waves and the injection of electrons are key issues in self-modulated laser-wakefield accelerators. By implementing a copropagating laser prepulse with proper timing, we are able to control the growth of Raman forward scattering and the production of accelerated electrons. The dependence of the Raman intensity on prepulse timing indicates that the seeding of Raman forward scattering is dominated by the ionization-induced wakefield, and the dependence of the divergence and number of accelerated electrons further reveals that the stimulated Raman backward scattering of the prepulse plays the essential role of injecting hot electrons into the fast plasma wave driven by the main pulse.  相似文献   
10.
The measurement of anisotropic flow in heavy ion collisions will give insight into the equation of state of the matter formed in the collision. There are several methods available to measure anisotropic flow. However, methods based on two-particle correlations do not reproduce the flow signal if non-flow is present. Methods based on multi-particle correlations do. A new reaction-plane estimate is presented based on the Lee- Yang Zeroes method which enables an unbiased analysis of e.g. jets vs. the reaction plane and charm vs. the reaction plane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号