首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   1篇
物理学   1篇
  2023年   1篇
  2019年   1篇
排序方式: 共有2条查询结果,搜索用时 5 毫秒
1
1.
This contribution explores the effect of nanoparticles of iron (III) oxide (Fe2O3) on the combustion of coal surrogate, i.e., anisole, identifying the changes in ignition features as well as the occurrence of persistent organic pollutants in the initiation channels. The method applies packed-bed reactor coupled with Fourier transform infrared (FTIR) spectroscopy to quantitate the ignition temperature under typical fuel-rich conditions, in-situ electron paramagnetic resonance (EPR) to elucidate the formation of environmentally-persistent free radicals (EPFR), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) to monitor the chemisorption of organic substrates on the nanoparticles, as well as X-ray diffraction for particles characterisation (PXRD). We employ cluster-based quantum mechanical calculation to map the reaction pathway within the scope of the density functional theory. The results of Fe2O3-mediated combustion of anisole depict an excessive reduction in ignition temperature from 500?°C around 220?°C at λ?=?0.8. As confirmed both from EPR and DRIFTS measurements, the chemisorption of anisole on α-Fe2O3 surfaces follows the direct dissociation of the O–CH3 (and OCH2–H), leading to the formation of surface-bound phenoxy radicals at temperatures as low as 25?°C and incurring an estimated energy barrier of Ea?=?18?kJ mol?1 and a preexponential factor of A?=?2.7?×?1012 M?1 s?1. This insight applies to free-radical chain reactions that induce spontaneous fires of coal, as coal comprises ferric oxide nanoparticles, and equally to coexistence of aromatic fuels with thermodynamically reactive Fe2O3 surface, e.g., in fly ash, at the cooled-down tail of combustion stacks.  相似文献   
2.
Uncomplicated malaria is effectively treated with oral artemisinin-based combination therapy (ACT). Yet, there is an unmet clinical need for the intravenous treatment of the more fatal severe malaria. There is no combination intravenous therapy for uncomplicated due to the nonavailability of a water-soluble partner drug for the artemisinin, artesunate. The currently available treatment is a two-part regimen split into an intravenous artesunate followed by the conventional oral ACT . In a novel application of polymer therapeutics, the aqueous insoluble antimalarial lumefantrine is conjugated to a carrier polymer to create a new water-soluble chemical entity suitable for intravenous administration in a clinically relevant formulation . The conjugate is characterized by spectroscopic and analytical techniques, and the aqueous solubility of lumefantrine is determined to have increased by three orders of magnitude. Pharmacokinetic studies in mice indicate that there is a significant plasma release of lumefantrine and production its metabolite desbutyl-lumefantrine (area under the curve of metabolite is ≈10% that of the parent). In a Plasmodium falciparum malaria mouse model, parasitemia clearance is 50% higher than that of reference unconjugated lumefantrine. The polymer-lumefantrine shows potential for entering the clinic to meet the need for a one-course combination treatment for severe malaria.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号