首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   1篇
物理学   5篇
  2013年   1篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  1992年   1篇
排序方式: 共有6条查询结果,搜索用时 125 毫秒
1
1.
A liquid chromatographic-mass spectrometric method has been developed to determine busulfan concentrations in the cerebrospinal fluid and serum of some children undergoing bone marrow autotransplantation. After two liquid-liquid extraction steps with dichloromethane on a biological matrix, the separation of busulfan was carried out by isocratic reversed-phase chromatography. The mass spectrometric system was operated in electron-impact mode. Principal ions at m/z 175, 111 and 79 were observed for busulfan, but only m/z 175 was chosen for the quantification of the analyte. The retention time of busulfan was 2.5 min. The detection limit of 100 ng/ml allowed the determination of cerebrospinal fluid and serum busulfan concentrations during the four days of high-dose (1 mg/kg) treatment prior to autotransplantation in five child patients.  相似文献   
2.
We investigate the relationship between the temporal variation in the magnitude of occipital visual evoked potentials (VEPs) and of haemodynamic measures of brain activity obtained using both blood oxygenation level dependent (BOLD) and perfusion sensitive (ASL) functional magnetic resonance imaging (fMRI). Volunteers underwent a continuous BOLD fMRI scan and/or a continuous perfusion-sensitive (gradient and spin echo readout) ASL scan, during which 30 second blocks of contrast reversing visual stimuli (at 4 Hz) were interleaved with 30 second blocks of rest (visual fixation). Electroencephalography (EEG) and fMRI were simultaneously recorded and following EEG artefact cleaning, VEPs were averaged across the whole stimulation block (120 reversals, VEP120) and at a finer timescale (15 reversals, VEP15). Both BOLD and ASL time-series were linearly modelled to establish: (1) the mean response to visual stimulation, (2) transient responses at the start and end of each stimulation block, (3) the linear decrease between blocks, (4) the nonlinear between-block variation (covariation with VEP120), (5) the linear decrease within block and (6) the nonlinear variation within block (covariation with VEP15).  相似文献   
3.
Demonstrations of the possibility of obtaining functional information from the spinal cord in humans using functional magnetic resonance imaging (fMRI) have been growing in number and sophistication, but the technique and the results that it provides are still perceived by the scientific community with a greater degree of scepticism than fMRI investigations of brain function. Here we review the literature on spinal fMRI in humans during voluntary movements and somatosensory stimulation. Particular attention is given to study design, acquisition and statistical analysis of the images, and to the agreement between the obtained results and existing knowledge regarding spinal cord anatomy and physiology.  相似文献   
4.
In the past decade the use of blood oxygen level-dependent (BOLD) fMRI to investigate the effect of diseases and pharmacological agents on brain activity has increased greatly. BOLD fMRI does not measure neural activity directly, but relies on a cascade of physiological events linking neural activity to the generation of MRI signal. However, most of the disease and pharmacological studies performed so far have interpreted changes in BOLD fMRI as "brain activation," ignoring the potential confounds that can arise through drug- or disease-induced modulation of events downstream of the neural activity. This issue is especially serious in diseases (like multiple sclerosis, brain tumours and stroke) and drugs (like anaesthetics or those with a vascular action) that are known to influence these physiological events. Here we provide evidence that, to extract meaningful information on brain activity in patient and pharmacological BOLD fMRI studies, it is important to identify, characterise and possibly correct these influences that potentially confound the results. We suggest a series of experimental measures to improve the interpretability of BOLD fMRI studies. We have ranked these according to their potential information and current practical feasibility. First-line, necessary improvements consist of (1) the inclusion of one or more control tasks, and (2) the recording of physiological parameters during scanning and subsequent correction of possible between-group differences. Second-line, highly recommended important aim to make the results of a patient or drug BOLD study more interpretable and include the assessment of (1) baseline brain perfusion, (2) vascular reactivity, (3) the inclusion of stimulus-related perfusion fMRI and (4) the recording of electrophysiological responses to the stimulus of interest. Finally, third-line, desirable improvements consist of the inclusion of (1) simultaneous EEG-fMRI, (2) cerebral blood volume and (3) rate of metabolic oxygen consumption measurements and, when relevant, (4) animal studies investigating signalling between neural cells and blood vessels.  相似文献   
5.
GD Fletcher 《Molecular physics》2013,111(23-24):2971-2976
A scalable multi-configuration self-consistent field (MCSCF) algorithm is described. The method for optimizing the orbital and configurational parameters is based upon the two-step Newton–Raphson approach with an augmented orbital Hessian matrix. A single copy of the two-electron integrals in the molecular orbital basis is distributed over the memory of all processors. Storage of the augmented Hessian is avoided by re-computing its elements as needed. A replicated data approach is used to parallelize the configuration interaction step. Scalability to 1024 processors is demonstrated.  相似文献   
6.
Across-trial averaging of event-related EEG responses and beyond   总被引:1,自引:0,他引:1  
Internally and externally triggered sensory, motor and cognitive events elicit a number of transient changes in the ongoing electroencephalogram (EEG): event-related brain potentials (ERPs), event-related synchronization and desynchronization (ERS/ERD), and event-related phase resetting (ERPR). To increase the signal-to-noise ratio of event-related brain responses, most studies rely on across-trial averaging in the time domain, a procedure that is, however, blind to a significant fraction of the elicited cortical activity. Here, we outline the key concepts underlying the limitations of time-domain averaging and consider three alternative methodological approaches that have received increasing interest: time-frequency decomposition of the EEG (using the continuous wavelet transform), blind source separation of the EEG (using Independent Component Analysis) and the analysis of event-related brain responses at the level of single trials. In addition, we provide practical guidelines on the implementation of these methods and on the interpretation of the results they produce.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号