首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   1篇
物理学   1篇
  2011年   1篇
  1989年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
We study interference patterns of a magnetically doped topological insulator Bi(2-x)Fe(x)Te(3+d) by using Fourier transform scanning tunneling spectroscopy and observe several new scattering channels. A comparison with angle-resolved photoemission spectroscopy allows us to unambiguously ascertain the momentum-space origin of distinct dispersing channels along high-symmetry directions and identify those originating from time-reversal symmetry breaking. Our analysis also reveals that the surface state survives far above the energy where angle-resolved photoemission spectroscopy finds the onset of continuum bulk bands.  相似文献   
2.
A covalently closed, circular, supercoiled plasmid was exposed to singlet oxygen by a separated-surface sensitizer. For each exposure, the quantity of single oxygen entering the DNA target solution was estimated by its oxidation of histidine. After singlet oxygen exposure, some DNA samples were treated to disclose occult lesions. Agarose gel electrophoresis was then used to resolve the unrelaxed supercoils from the relaxed circular and linear species, and all bands were quantitated fluorometrically. Exposure of supercoiled plasmid DNA to singlet oxygen induced frank DNA strand breaks, alkali-labile sites (pH 12.5, 90 degrees C, 30 min), and piperidine-labile sites (0.4 M, 60 degrees C, 30 min), all in a dose-dependent manner. Yields of alkali-labile and piperidine-labile sites ranged from one to four times the frank strand break yield. Replacement of buffered H2O by buffered D2O as the DNA solvent for singlet oxygen exposures increased DNA lesion yields by a factor of 2.6 (averaged over lesion classes). Our data for the detection of frank strand breaks is at variance with published results from studies in which singlet oxygen was derived from a thermolabile endoperoxide dissolved in the DNA solution.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号