首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
物理学   13篇
  2017年   1篇
  2014年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有13条查询结果,搜索用时 718 毫秒
1.
This paper presents the development of nanotechnology between 2000 and 2016 as reflected in the Web of Science papers, United States Patent and Trademark Office (USPTO), World International Property Organization (WIPO) patents, and National Science Foundation (NSF) awards, with a special reference to the United States (US), European Union (EU27), P.R. China, Japan, and South Korea. The field of nanotechnology is branching out into novel scientific and technology platforms, and it is increasingly difficult to separate foundational nanoscale components from divergent application areas. The average global growth rate has been sustained at about 15% for both papers and patents in the selected interval. The growth rates among regions are non-uniform. P.R. China and South Korea have increased faster in both the numbers and quality of their scientific publications, and currently P.R. China has the largest volume of nanotechnology publications and South Korea the most publications per capita in the field of nanotechnology. The US, EU27, and Japan are maintaining leadership in the upstream, better cited, conceptual components of nanotechnology research and development.  相似文献   
2.
Huang  Zan  Chen  Hsinchun  Yip  Alan  Ng  Gavin  Guo  Fei  Chen  Zhi-Kai  Roco  Mihail C. 《Journal of nanoparticle research》2003,5(3-4):333-363
Nanoscale science and engineering (NSE) and related areas have seen rapid growth in recent years. The speed and scope of development in the field have made it essential for researchers to be informed on the progress across different laboratories, companies, industries and countries. In this project, we experimented with several analysis and visualization techniques on NSE-related United States patent documents to support various knowledge tasks. This paper presents results on the basic analysis of nanotechnology patents between 1976 and 2002, content map analysis and citation network analysis. The data have been obtained on individual countries, institutions and technology fields. The top 10 countries with the largest number of nanotechnology patents are the United States, Japan, France, the United Kingdom, Taiwan, Korea, the Netherlands, Switzerland, Italy and Australia. The fastest growth in the last 5 years has been in chemical and pharmaceutical fields, followed by semiconductor devices. The results demonstrate potential of information-based discovery and visualization technologies to capture knowledge regarding nanotechnology performance, transfer of knowledge and trends of development through analyzing the patent documents.  相似文献   
3.
Radiolabelling of industrially manufactured nanoparticles is useful for nanoparticle dosimetry in biodistribution or cellular uptake studies for hazard and risk assessment. Ideally for such purposes, any chemical processing post production should be avoided as it may change the physico-chemical characteristics of the industrially manufactured species. In many cases, proton irradiation of nanoparticles allows radiolabelling by transmutation of a tiny fraction of their constituent atoms into radionuclides. However, not all types of nanoparticles offer nuclear reactions leading to radionuclides with adequate radiotracer properties. We describe here a process whereby in such cases nanoparticles can be labelled with 7Be, which exhibits a physical half-life of 53.29 days and emits γ-rays of 478 keV energy, and is suitable for most radiotracer studies. 7Be is produced via the proton-induced nuclear reaction 7Li(p,n)7Be in a fine-grained lithium compound with which the nanoparticles are mixed. The high recoil energy of 7Be atoms gives them a range that allows the 7Be-recoils to be transferred from the lithium compound into the nanoparticles by recoil implantation. The nanoparticles can be recovered from the mixture by dissolving the lithium compound and subsequent filtration or centrifugation. The method has been applied to radiolabel industrially manufactured SiO2 nanoparticles. The process can be controlled in such a way that no alterations of the 7Be-labelled nanoparticles are detectable by dynamic light scattering, X-ray diffraction and electron microscopy. Moreover, cyclotrons with maximum proton energies of 17–18 MeV that are available in most medical research centres could be used for this purpose.  相似文献   
4.
Nanotechnology patent applications published during 1991–2008 have been examined using the “title–abstract” keyword search on esp@cenet “worldwide” database. The longitudinal evolution of the number of patent applications, their topics, and their respective patent families have been evaluated for 15 national patent offices covering 98% of the total global activity. The patent offices of the United States (USA), People’s Republic of China (PRC), Japan, and South Korea have published the largest number of nanotechnology patent applications, and experienced significant but different growth rates after 2000. In most repositories, the largest numbers of nanotechnology patent applications originated from their own countries/regions, indicating a significant “home advantage.” The top applicant institutions are from different sectors in different countries (e.g., from industry in the US and Canada patent offices, and from academe or government agencies at the PRC office). As compared to 2000, the year before the establishment of the US National Nanotechnology Initiative (NNI), numerous new invention topics appeared in 2008, in all 15 patent repositories. This is more pronounced in the USA and PRC. Patent families have increased among the 15 patent offices, particularly after 2005. Overlapping patent applications increased from none in 1991 to about 4% in 2000 and to about 27% in 2008. The largest share of equivalent nanotechnology patent applications (1,258) between two repositories was identified between the US and Japan patent offices.  相似文献   
5.
Nanotechnology holds the promise to revolutionize a wide range of products, processes and applications. It is recognized by over sixty countries as critical for their development at the beginning of the 21st century. A significant public investment of over $1 billion annually is devoted to nanotechnology research in the United States. This paper provides an analysis of the National Science Foundation (NSF) funding of nanoscale science and engineering (NSE) and its relationship to the innovation as reflected in the United States Patent and Trade Office (USPTO) patent data. Using a combination of bibliometric analysis and visualization tools, we have identified several general trends, the key players, and the evolution of technology topics in the NSF funding and commercial patenting activities. This study documents the rapid growth of innovation in the field of nanotechnology and its correlation to funding. Statistical analysis shows that the NSF-funded researchers and their patents have higher impact factors than other private and publicly funded reference groups. This suggests the importance of fundamental research on nanotechnology development. The number of cites per NSF-funded inventor is about 10 as compared to 2 for all inventors of NSE-related patents recorded at USPTO, and the corresponding Authority Score is 20 as compared to 1.8.  相似文献   
6.
Nanotechnology research has experienced rapid growth in recent years. Advances in information technology enable efficient investigation of publications, their contents, and relationships for large sets of nanotechnology-related documents in order to assess the status of the field. This paper presents the development of a new knowledge mapping system, called Nano Mapper (), which integrates the analysis of nanotechnology patents and research grants into a Web-based platform. The Nano Mapper system currently contains nanotechnology-related patents for 1976–2006 from the United States Patent and Trademark Office (USPTO), European Patent Office (EPO), and Japan Patent Office (JPO), as well as grant documents from the U.S. National Science Foundation (NSF) for the same time period. The system provides complex search functionalities, and makes available a set of analysis and visualization tools (statistics, trend graphs, citation networks, and content maps) that can be applied to different levels of analytical units (countries, institutions, technical fields) and for different time intervals. The paper shows important nanotechnology patenting activities at USPTO for 2005–2006 identified through the Nano Mapper system.  相似文献   
7.
Trends for nanotechnology development in China, Russia, and India   总被引:1,自引:0,他引:1  
China, Russia, and India are playing an increasingly important role in global nanotechnology research and development (R&D). This paper comparatively inspects the paper and patent publications by these three countries in the Thomson Science Citation Index Expanded (SCI) database and United States Patent and Trademark Office (USPTO) database (1976–2007). Bibliographic, content map, and citation network analyses are used to evaluate country productivity, dominant research topics, and knowledge diffusion patterns. Significant and consistent growth in nanotechnology papers are noted in the three countries. Between 2000 and 2007, the average annual growth rate was 31.43% in China, 11.88% in Russia, and 33.51% in India. During the same time, the growth patterns were less consistent in patent publications: the corresponding average rates are 31.13, 10.41, and 5.96%. The three countries’ paper impact measured by the average number of citations has been lower than the world average. However, from 2000 to 2007, it experienced rapid increases of about 12.8 times in China, 8 times in India, and 1.6 times in Russia. The Chinese Academy of Sciences (CAS), the Russian Academy of Sciences (RAS), and the Indian Institutes of Technology (IIT) were the most productive institutions in paper publication, with 12,334, 6,773, and 1,831 papers, respectively. The three countries emphasized some common research topics such as “Quantum dots,” “Carbon nanotubes,” “Atomic force microscopy,” and “Scanning electron microscopy,” while Russia and India reported more research on nano-devices as compared with China. CAS, RAS, and IIT played key roles in the respective domestic knowledge diffusion.  相似文献   
8.
Academic nanoscale science and engineering (NSE) research provides a foundation for nanotechnology innovation reflected in patents. About 60% or about 50,000 of the NSE-related patents identified by “full-text” keyword searching between 1976 and 2004 at the United States Patent and Trademark Office (USPTO) have an average of approximately 18 academic citations. The most cited academic journals, individual researchers, and research articles have been evaluated as sources of technology innovation in the NSE area over the 28-year period. Each of the most influential articles was cited about 90 times on the average, while the most influential author was cited more than 700 times by the NSE-related patents. Thirteen mainstream journals accounted for about 20% of all citations. Science, Nature and Proceedings of the National Academy of Sciences (PNAS) have consistently been the top three most cited journals, with each article being cited three times on average. There is another kind of influential journals, represented by Biosystems and Origin of Life, which have very few articles cited but with exceptionally high frequencies. The number of academic citations per year from ten most cited journals has increased by over 17 times in the interval (1990–1999) as compared to (1976–1989), and again over 3 times in the interval (2000–2004) as compared to (1990–1999). This is an indication of increased used of academic knowledge creation in the NSE-related patents.  相似文献   
9.
Nanoscale science and engineering (NSE) have seen rapid growth and expansion in new areas in recent years. This paper provides an international patent analysis using the U.S. Patent and Trademark Office (USPTO) data searched by keywords of the entire text: title, abstract, claims, and specifications. A fraction of these patents fully satisfy the National Nanotechnology Initiative definition of nanotechnology (which requires exploiting specific phenomena and direct manipulation at the nanoscale), while others only make use of NSE tools and methods of investigation. In previous work we proposed an integrated patent analysis and visualization framework of patent content mapping for the NSE field and of knowledge flow pattern identification until 2002. In this paper, the results are updated for 2003, and the new trends are presented.  相似文献   
10.
Nanotechnology research has experienced growth rapid in knowledge and innovations; it also attracted significant public funding in recent years. Several countries have recognized nanotechnology as a critical research domain that promises to revolutionize a wide range of fields of applications. In this paper, we present an analysis of the funding for nanoscale science and engineering (NSE) at the National Science Foundation (NSF) and its implications on technological innovation (number of patents) in this field from 2001 to 2004. Using a combination of basic bibliometric analysis and content visualization tools, we identify growth trends, research topic distribution, and the evolution in NSF funding and commercial patenting activities recorded at the United States Patent Office (USPTO). The patent citations are used to compare the impact of the NSF-funded research on nanotechnology development with research supported by other sources in the United States and abroad. The analysis shows that the NSF-funded researchers and patents authored by them have significantly higher impact based on patent citation measures in the four-year period than other comparison groups. The NSF-authored patent impact is growing faster with the lifetime of a patent, indicating the long-term importance of fundamental research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号