首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   437篇
  免费   6篇
  国内免费   5篇
化学   234篇
晶体学   7篇
力学   1篇
数学   28篇
物理学   178篇
  2023年   2篇
  2020年   3篇
  2019年   5篇
  2018年   4篇
  2016年   8篇
  2015年   5篇
  2014年   9篇
  2013年   33篇
  2012年   17篇
  2011年   29篇
  2010年   16篇
  2009年   7篇
  2008年   21篇
  2007年   24篇
  2006年   23篇
  2005年   24篇
  2004年   21篇
  2003年   13篇
  2002年   17篇
  2001年   16篇
  2000年   20篇
  1999年   10篇
  1998年   2篇
  1997年   7篇
  1996年   6篇
  1995年   5篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1988年   3篇
  1987年   5篇
  1986年   5篇
  1985年   6篇
  1984年   5篇
  1983年   2篇
  1982年   5篇
  1981年   3篇
  1980年   3篇
  1979年   6篇
  1978年   5篇
  1977年   5篇
  1976年   3篇
  1974年   2篇
  1973年   3篇
  1970年   2篇
  1969年   7篇
  1968年   4篇
  1966年   1篇
排序方式: 共有448条查询结果,搜索用时 24 毫秒
1.
Quantitative analysis of metal cation doping by solid oxide electrochemical doping (SOED) has been performed under galvanostatic doping conditions. A M–β″-Al2O3 (M=Ag, Na) microelectrode (contact radius: about 10 μm) was used as cation source to attain a homogeneous solid–solid contact between the β″-Al2O3 and doping target. In Ag doping into alkali borate glass, the measured dopant amount closely matched the theoretical value. High Faraday efficiencies of above 90% were obtained. This suggests that the dopant amount can be precisely controlled on a micromole scale by the electric charge during electrolysis. On the other hand, current efficiencies of Na doping into Bi2Sr2CaCu2Oy (BSCCO) ceramics depended on the applied constant current. Efficiencies of above 80% were achieved at a constant current of 10 μA (1.6 A cm−2). The relatively low efficiencies were explained by the saturation of BSCCO grain boundaries with Na. By contrast, excess Na was detected on the anodic surface of ceramics at a constant current of 100 μA (16 A cm−2). In the present study, we demonstrate that SOED enables micromole-scale control over dopant amount.  相似文献   
2.
3.
4.
High power Large Orbit Gyrotron (LOG) [1] is now under development at FIR FU. First version of this device was recently manufactured and then assembled with power supply ETIGO-IV [2]. Results of preliminary tests of electron-optic system are presented. The conditions when stableflat form of current pulse realized are discussed. Analytical estimations of cathode-anode distance to achieve small influence of cathode plasma during high voltage (HV) pulse are performed. Two new electron gun versions with decreased influence of the cathode plasma on its impedance and pulse form are suggested and optimized. New optimal magnetic field distributions are found. First gun has quiasi-flat cathode configuration near the anode diaphragm and provides operating current about 60 A. Second one uses blade cathode with operating current about 30 A. Beam quality for both guns is suitable for LOG operation.  相似文献   
5.
6.
Two donor molecules newly synthesized, dimethylthio- and ethylenedithio-tetrathiafulvalenothioquinone-1,3-diselenolemethides (1 and 2), were used to prepare their charge-transfer (CT) salts with a magnetic FeBr(4)(-) counteranion. For 1, a low electrical conducting 1:1 salt (1.FeBr(4)) was obtained, in which molecules of 1 are tightly dimerized in a one-dimensional (1D) stacking column. On the other hand, 2 gave a 2:1 salt (2(2).FeBr(4)) as two different kinds of plate crystals (I and II). Both I and II possess similar stacking structures of molecules of 2 in each 1D column with a half-cut pipelike structure along the c axis. However, for I, the stacking columns are aligned in the same direction along the a and b axes, while for II they are in the same direction along the a axis, but in the reverse direction along the b axis, resulting in the difference in the relative arrangement of molecules of 2 and FeBr(4)(-) ions between the two crystals. The room-temperature electrical conductivities of the single crystals of I and II were 13.6 and 12.7 S cm(-)(1), respectively. The electrical conducting behavior in I was metallic above 170 K but changed to be semiconducting with a very small activation energy of 7.0 meV in the temperature range 4-170 K. In contrast, II showed the semiconducting behavior in the whole temperature range 77-285 K. The corresponding nonmagnetic GaBr(4)(-) salts with almost the same crystal structure as I and II showed definitively different electrical conducting properties in the metal to semiconductor transition temperature in I as well as in the magnitude of activation energy in the semiconducting region of I and II. The interaction between the d spins of FeBr(4)(-) ions was weak and antiferromagnetic in both I and II, but the magnitude of the spin interaction was unexpectedly larger compared with that in the FeBr(4)(-) salt of the corresponding sulfur derivative of 2 with closer contact between the neighboring FeBr(4)(-) ions. These electrical conducting and magnetic results suggest a significant interaction between the conducting pi electrons and the d spins of FeBr(4)(-) ions located near the columns or layers.  相似文献   
7.
Polyimide containing an indan unit and alkyl moiety with a high molecular weight was prepared from 5,7‐diamino‐1,1,4,6‐tetramethylindan and 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride. This polyimide was amorphous and soluble in common organic solvents, such as tetrahydrofuran, chloroform, and cyclopentanone. Thermogravimetry of the polyimide showed good thermal stability, indicating that a 10% weight loss of the polyimide was observed at 500 °C in nitrogen. The glass‐transition temperature of the polyimide was not observed by DSC measurement between room temperature and 400 °C at a heating rate of 10 °C/min (Apparatus: DSC3100 MAC Science Co., Ltd.). Transparency of the polyimide at 365 nm was 80%. The polyimide acted as a photosensitive resist of negative type by UV radiation. The resist had a sensitivity of 31 mJ/cm2 and a contrast of 2.3 when it was developed with cyclopentanone at room temperature. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 423–428, 2002  相似文献   
8.
Kamada T  Yamamoto Y 《Talanta》1980,27(6):473-476
A microanalytical method for the measurement of selenium in waters and biological materials by a flameless atomic-absorption technique has been developed. The ammonium pyrrolidinedithiocarbamate-methyl isobutyl ketone extraction system is used for separation from interfering materials such as large amounts of alkali and alkaline earth metal salts and mineral acids. The atomic-absorption sensitivity for selenium is found to be enhanced to a large extent by co-extraction of some transition metal ions. Copper(II) has been used successfully as such an additive to diminish the volatility of selenium in the graphite furnace during the ashing step of the atomization cycle. When the aqueous phase/organic solvent volume ratio is 5 and the volume injected into the graphite furnace is 20 mul, the sensitivity for selenium is 0.3 ng/ml for 1% absorption. The relative standard deviation is ca. 2%. Interference by other metal ions is prevented by masking with EDTA. The method has been applied satisfactorily for the determination of minute amounts of selenium in waters and various biological materials.  相似文献   
9.
A new synthetic pathway of A–B–A tri-block copolyether which is composed of a hydrophilic poly(oxyethylene) unit as an A part and a hydrophobic poly(oxy-2-methyl-trimethylene) unit as a B part is proposed. Telechelic α-tosyl-ω-tosyloxypoly(oxy-2-methyl-trimethylene) derived from tosylation of poly(oxy-2-methyl-trimethylene glycol) (PMTG) was allowed to react with poly(ethylene glycol) (PEG) in the presence of sodium hydroxide. Tg of the resulting A–B–A tri-block copolyether (PEMG) (M?n = 1600) was ?72°C and its specific gravity [D415] was 1.055.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号