首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   3篇
物理学   2篇
  2022年   1篇
  2020年   1篇
  2011年   2篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 125 毫秒
1
1.
We report on the investigation of electropreconcentration phenomena in micro-/nanofluidic devices integrating 100 μm long nanochannels using 2D COMSOL simulations based on the coupled Poisson–Nernst–Planck and Navier–Stokes system of equations. Our numerical model is used to demonstrate the influence of key governing parameters such as electrolyte concentration, surface charge density, and applied axial electric field on ion concentration polarization (ICP) dynamics in our system. Under sufficiently extreme surface-charge-governed transport conditions, ICP propagation is shown to enable various transient and stationary stacking and counter-flow gradient focusing mechanisms of anionic analytes. We resolve these spatiotemporal dynamics of analytes and electrolyte ICP over disparate time and length scales, and confirm previous findings that the greatest enhancement is observed when a system is tuned for analyte focusing at the charge, excluding microchannel, nanochannel electrical double layer (EDL) interface. Moreover, we demonstrate that such tuning can readily be achieved by including additional nanochannels oriented parallel to the electric field between two microchannels, effectively increasing the overall perm-selectivity and leading to enhanced focusing at the EDL interfaces. This approach shows promise in providing added control over the extent of ICP in electrokinetic systems, particularly under circumstances in which relatively weak ICP effects are observed using only a single channel.  相似文献   
2.
The magneto-transport properties of thick relaxed A-site deficient films having the composition Pr Sr0.3MnO3 (PSMO with the □ symbol for the Pr vacancy) and Pr0.7Sr MnO3 (PSMO) are studied. A direct comparison with a Pr0.7Sr0.3MnO3 (PSMO)completely relaxed film, deposited under the same growth conditions, shows a reduction of the in-plane parameter a100 associated to an enhancement of the out-plane parameter. The strains (bulk strain εB and biaxial Jahn-Teller strain εJ-T) do vary with the nature of the cationic vacancy. For example, an enhancement of εB of 9% in the PSMO film (Sr deficient) produces a decrease of TC of 30 K, whereas the Pr deficient PSMO film exhibits a large reduction of both εB (-16%) and εJ-T (divided by a factor of 5), which enhances TC of 12 K, similarly to previous observations on bulk ceramics. With a reduced resistivity (ρ<0.02 Ω cm), the obtained Pr-deficient film, PSMO, exhibits the best magneto-transport properties with a decreasing magnetoresistance sensitivity at low field.  相似文献   
3.
The shape and the surface charge of microchannels are critical parameters for ionic and mass transport in microfluidic systems. A great number of studies and developments have been carried out in order to optimize these features separately. We propose to consider them together within a new fundamental parameter for microfluidics, that we named the Volumic Surface Charge (VSC), which is the ratio of the surface charge to the section height in planar microchannels. The non-linear effects induced by rapid VSC variations can result in selective preconcentration processes, which can be used for a simultaneous preconcentration and separation of biomolecules within simple straight channels. In this review, we first present 3 different techniques that we developed to tune the VSC either by surface chemical patterning, integration of polarisable interfaces or geometrical constrictions. The proof of concept of the selective preconcentration using VSC variations will be presented on the basis of experimental results obtained with fluorescent probes and numerical simulations.  相似文献   
4.
Concentration polarization (CP)-based focusing electrokinetics nanofluidic devices have been developed in order to simultaneously detect and enrich highly diluted analytes on-a-chip. However, stabilization of focal points over long time under the application of the electric field remains as a technical bottleneck. If pressure-assisted preconcentration methods have been proposed to stabilize propagating modes at low inverse Dukhin number , these recent protocols remain laborious for optimizing experimental parameters. In this paper, “electric field E/counter-pressure P” diagrams have been established during pressure-assisted electro-preconcentration of fluorescein as a model molecule. Such E/P diagram allows direct observation of the region for which the optimal counter-pressure P leads to a stable focusing regime. This region of stable focusing is shown to vary depending of the nanoslit length (100 μm < Lnanoslit < 500 μm) and the nature of the background electrolyte (KCl and NaCl). Longer nanoslits (500 μm) produce stabilization at low counter-pressure P, whereas NaCl offers a narrower region of stable focusing in the E/P diagram compared to KCl. Finally, the ability of such pressure-assisted protocol to concentrate negatively charged proteins has been tested with a more applicative protein, i.e., ovalbumin. The corresponding E/P diagram confirms the existence of the stable focusing regime at both low electric field E (≤20 V) and counter-pressure P (≤0.4 bar). With an enrichment factor as high as 70 after 2 min for ovalbumin at a concentration of 10 μM, such pressure-assisted nanofluidic electro-preconcentration protocol appears very promising to concentrate and detect biomolecules.  相似文献   
5.
Krone  P.  Makarov  D.  Cattoni  A.  Faini  G.  Haghiri-Gosnet  A.-M.  Knittel  I.  Hartmann  U.  Schrefl  T.  Albrecht  M. 《Journal of nanoparticle research》2011,13(11):5587-5593
The magnetization reversal behavior of a dot array consisting of Co/Pt multilayers with perpendicular magnetic anisotropy was investigated. The size of the dots was varied from 200 nm down to 40 nm, while keeping the filling factor constant at about 0.16. The structural properties were determined by scanning electron microscopy, whereas the magnetic investigation was performed using SQUID and MFM techniques. It was observed that the dot size has a severe impact on the magnetization reversal mechanism where only the smallest dots with a size of 40 nm are found to be in a magnetic single-domain state. Moreover, the patterning process leads to a degradation of the multilayer, leading to a reduction of the switching field and an increase of the switching field distribution with decreasing dot size. In addition, micromagnetic simulations were performed to understand the magnetization reversal mechanism in more detail.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号