首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   15篇
  国内免费   1篇
化学   180篇
力学   3篇
数学   14篇
物理学   28篇
  2022年   1篇
  2021年   6篇
  2020年   7篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   15篇
  2014年   3篇
  2013年   11篇
  2012年   6篇
  2011年   8篇
  2010年   4篇
  2009年   5篇
  2008年   18篇
  2007年   13篇
  2006年   20篇
  2005年   21篇
  2004年   7篇
  2003年   10篇
  2002年   14篇
  2001年   2篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1970年   1篇
  1962年   1篇
  1959年   2篇
  1929年   1篇
  1928年   1篇
  1893年   1篇
排序方式: 共有225条查询结果,搜索用时 15 毫秒
1.
Naphthalimide‐phthalimide derivatives (NDPDs) have been synthesized and combined with an iodonium salt, N‐vinylcarbazole, amine or 2,4,6‐tris(trichloromethyl)‐1,3,5‐triazine to produce reactive species (i.e., radicals and cations). These generated reactive species are capable of initiating the cationic polymerization of epoxides and/or the radical polymerization of acrylates upon exposure to very soft polychromatic visible lights or blue lights. Compared with the well‐known camphorquinone based systems used as references, the novel NDPD based combinations employed here demonstrate clearly higher efficiencies for the cationic polymerization of epoxides under air as well as the radical polymerization of acrylates. Remarkably, one of the NDPDs (i.e., NDPD2) based systems is characterized by an outstanding reactivity. The structure/reactivity/efficiency relationships of the investigated NDPDs were studied by fluorescence, cyclic voltammetry, laser flash photolysis, electron spin resonance spin trapping, and steady state photolysis techniques. The key parameters for their reactivity are provided. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 665–674  相似文献   
2.
An ionophore assisted metal-ion transport across block copolymer membranes has been used to control the local Ca2+ concentration during precipitation of calcium phosphate in giant block copolymer vesicles.  相似文献   
3.
The adsorption by a coal-based mesoporous activated carbon of humic acids (HAs) isolated from two Polish lignites was studied. For comparison, a commercial Aldrich humic acid was also included into this study. The differences in chemical structure and functional groups of HAs were determined by elemental analysis and infrared spectroscopy DRIFT. Two activated carbons used differed in terms of mesopore volume, mesopore size distribution, and chemical properties of the surface. The kinetics of adsorption of HAs have been discussed using three kinetic models, i.e., the first-order Lagergren model, the pseudo-second-order model, and the intraparticle diffusion model. It was found that the adsorption of HAs from alkaline solution on mesoporous activated carbon proceeds according to the pseudo-second-order model. The correlation coefficients were close to 1. The intraparticle diffusion of HA molecules within the carbon particle was identified to be the rate-limiting step. Comparing the two activated carbons, the carbon with a higher volume of pores with widths of 10-50 nm showed a greater removal efficiency of HA. An increase in the Freundlich adsorption capacity with decreasing carbon content of HA was observed. Among the HAs studied, S-HA shows characteristics indicating the highest contribution of small-size fraction. The S-HA was removed by both activated carbons to the highest extent. The effect of pH solution on the adsorption of HA was examined over the range pH 5.4-12.2. It was found that the extent of adsorption decreased with decreasing pH of the solution.  相似文献   
4.
5.
The polyanionic water-soluble and non-mu-oxo-dimer-forming iron porphyrin iron(III) 5(4),10(4),15(4),20(4)-tetra-tert-butyl-5(2),5(6),15(2),15(6)-tetrakis[2,2-bis(carboxylato)ethyl]-5,10,15,20-tetraphenylporphyrin, (P(8-))Fe(III) (1), was synthesized as an octasodium salt by applying well-established porphyrin and organic chemistry procedures to bromomethylated precursor porphyrins and characterized by standard techniques such as UV-vis and (1)H NMR spectroscopy. A single pK(a1) value of 9.26 was determined for the deprotonation of coordinated water in (P(8-))Fe(III)(H(2)O)(2) (1-H(2)()O) present in aqueous solution at pH <9. The porphyrin complex reversibly binds NO in aqueous solution to give the mononitrosyl adduct, (P(8-))Fe(II)(NO(+))(L), where L = H(2)O or OH(-). The kinetics of the binding and release of NO was studied as a function of pH, temperature, and pressure by stopped-flow and laser flash photolysis techniques. The diaqua-ligated form of the porphyrin complex binds and releases NO according to a dissociative interchange mechanism based on the positive values of the activation parameters DeltaS() and DeltaV() for the "on" and "off" reactions. The rate constant k(on) = 6.2 x 10(4) M(-1) s(-1) (24 degrees C), determined for NO binding to the monohydroxo-ligated (P(8-))Fe(III)(OH) (1-OH) present in solution at pH >9, is markedly lower than the corresponding value measured for 1-H(2)O at lower pH (k(on) = 8.2 x 10(5) M(-1) s(-1), 24 degrees C, pH 7). The observed decrease in the reactivity is contradictory to that expected for the diaqua- and monohydroxo-ligated forms of the iron(III) complex and is accounted for in terms of a mechanistic changeover observed for 1-H(2)O and 1-OH in their reactions with NO. The mechanistic interpretation offered is further substantiated by the results of water-exchange studies performed on the polyanionic porphyrin complex as a function of pH, temperature, and pressure.  相似文献   
6.
The synthetic heme-thiolate complex (SR) in methanol binds nitric oxide (k(on) = (2.7 +/- 0.2) x10(6) M(-)(1) s(-)(1) at 25 degrees C) to form SR(NO). The binding of NO to the SR complex in a noncoordinating solvent, such as toluene, was found to be almost 3 orders of magnitude faster than that in methanol. The activation parameters DeltaH(), DeltaS(), and DeltaV() for the formation of SR(NO) in methanol are consistent with the operation of a limiting dissociative mechanism, dominated by dissociation of methanol in SR(MeOH). In the presence of an excess of NO, the formation of SR(NO) is followed by subsequent slower reactions. The substantially negative activation entropy and activation volume values found for the second observed reaction step support an associative mechanism which involves attack of a second NO molecule on the thiolate ligand in the initially formed SR(NO) complex. The following slower reactions are strongly accelerated by a large excess of NO or by the presence of NO(2)(-) in the SR/NO reaction mixture. They can be accounted for in terms of dynamic equilibria between higher nitrogen oxides (NO(x)()) and reactive SR species, which lead to the formation of a nitrosyl-nitrite complex of SR(Fe(II)) as the final product. This finding is clearly supported by laser flash photolysis studies on the SR/NO reaction mixture, which do not reveal simple NO photolabilization from SR(Fe(III))(NO), but rather involve the generation of at least three photoinduced intermediates decaying with different rate constants to the starting material. The species formed along the proposed reaction pathways were characterized by FTIR and EPR spectroscopy. The results are discussed in terms of their relevance for the biological function of cytochrome P450 enzymes and in context of results for the reaction of NO with imidazole- and thiolate-ligated iron(III) hemoproteins.  相似文献   
7.
A newly developed method using an exponentially modified Gaussian peak shape model produces results that are more precise and less subject to baseline noise than previous methods for characterizing chromatographic band broadening. The method requires only precisely measurable experimental peak parameters: peak retention time, peak height, peak area, and peak centroid (first moment). Accuracy and precision of the new method were compared with other digital approaches by using computer-synthesized peaks and experimental chromatographic data from many HPLC columns. The proposed method offers a reasonable compromise between accuracy, precision, and convenience. A rapid visual estimate of peak skew can be made by inspecting peak shape and referring to a calibration plot involving peak parameters. Peak variance and skew data from this method are also useful for finding column dispersion corrections in size-exclusion chromatography calibrations.  相似文献   
8.
Mechanistic insight on the reversible binding of NO to Fe(II) chelate complexes as potential catalysts for the removal of NO from effluent gas streams has been obtained from the temperature and pressure parameters for the "on" and "off" reactions determined using a combination of flash photolysis and stopped-flow techniques. These parameters are correlated with those for water exchange reactions on the corresponding Fe(II) and Fe(III) chelate complexes, from which mechanistic conclusions are drawn. Small and positive Delta V(++) values are found for NO binding to and release from all the selected complexes, consistent with a dissociative interchange (I(d)) mechanism. The only exception in the series of studied complexes is the binding of NO to [Fe(II)(nta)(H(2)O)(2)](-). The negative volume of activation observed for this reaction supports the operation of an I(a) ligand substitution mechanism. The apparent mechanistic differences can be accounted for in terms of the electronic and structural features of the studied complexes. The results indicate that the aminocarboxylate chelates affect the rate and overall equilibrium constants, as well as the nature of the substitution mechanism by which NO coordinates to the selected complexes. There is, however, no simple correlation between the rate and activation parameters and the selected donor groups or overall charge on the iron(II) complexes.  相似文献   
9.
Complexes of the form (Tp*)MoOCl(p-OC(6)H(4)X) and (Tp*)MoO(p-OC(6)H(4)X)(2) (Tp* = hydrotris(3,5-dimethyl-1-pyrazolyl)borate and X = OEt, OMe, Et, Me, H, F, Cl, Br, I, and CN) were examined by electrochemical techniques and gas-phase photoelectron spectroscopy to probe the effect of the remote substituent (X) on electron-transfer reactions at the oxomolybdenum core. Cyclic voltammetry revealed that all of these neutral Mo(V) compounds undergo a quasireversible one-electron oxidation (Mo(VI)/Mo(V)) and a quasireversible one-electron reduction (Mo(V)/Mo(IV)) at potentials that linearly depend on the electronic influence (Hammett sigma(p) parameter) of X. The first ionization energies for (Tp*)MoO(p-OC(6)H(4)X)(2) (X = OEt, OMe, H, F, and CN) were determined by photoelectron spectroscopy. A nearly linear correlation was found for the Mo(VI)/Mo(V) oxidation potentials in solution and the gas-phase ionization energies. Calculated heterogeneous electron-transfer rate constants show a slight systematic dependence on the substituent.  相似文献   
10.
The three-dimensional structure of human cytochrome P450 3A4 was modeled based on crystallographic coordinates of four bacterial P450s: P450 BM-3, P450cam, P450terp, and P450eryF. The P450 3A4 sequence was aligned to those of the known proteins using a structure-based alignment of P450 BM-3, P450cam, P450terp, and P450eryF. The coordinates of the model were then calculated using a consensus strategy, and the final structure was optimized in the presence of water. The P450 3A4 model resembles P450 BM-3 the most, but the B helix is similar to that of P450eryF, which leads to an enlarged active site when compared with P450 BM-3, P450cam, and P450terp. The 3A4 residues equivalent to known substrate contact residues of the bacterial proteins and key residues of rat P450 2B1 are located in the active site or the substrate access channel. Docking of progesterone into the P450 3A4 model demonstrated that the substrate bound in a 6-orientation can interact with a number of active site residues, such as 114, 119, 301, 304, 305, 309, 370, 373, and 479, through hydrophobic interactions. The active site of the enzyme can also accommodate erythromycin, which, in addition to the residues listed for progesterone, also contacts residues 101, 104, 105, 214, 215, 217, 218, 374, and 478. The majority of 3A4 residues which interact with progesterone and/or erythromycin possess their equivalents in key residues of P450 2B enzymes, except for residues 297, 480 and 482, which do not contact either substrate in P450 3A4. The results from docking of progesterone and erythromycin into the enzyme model make it possible to pinpoint residues which may be important for 3A4 function and to target them for site-directed mutagenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号