首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   2篇
  国内免费   1篇
化学   10篇
晶体学   1篇
数学   1篇
物理学   12篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1993年   1篇
  1979年   1篇
  1977年   2篇
排序方式: 共有24条查询结果,搜索用时 125 毫秒
1.
2.
We report on experiments giving evidence for quantum effects of electromagnetic flux in barium alumosilicate glass. In contrast to expectation, below 100 mK the dielectric response becomes sensitive to magnetic fields. The experimental findings include both lifting of the dielectric saturation by weak magnetic fields and oscillations of the dielectric response in the low temperature resonant regime. As the origin of these effects we suggest that the magnetic induction field violates the time reversal invariance leading to a flux periodicity in the energy levels of tunneling systems. At low temperatures, this effect is strongly enhanced by the interaction between tunneling systems and thus becomes measurable.  相似文献   
3.
Femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) gives access to ultrafast molecular dynamics. However, the gain of the temporal resolution entails a poor spectral resolution due to the inherent spectral width of the femtosecond excitation pulses. Modifications of the phase shape of one of the exciting pulses results in dramatic changes of the mode distribution reflected in coherent anti-Stokes Raman spectra. A feedback-controlled optimization of specific modes making use of phase and/or amplitude modulation of the pump laser pulse is applied to selectively influence the anti-Stokes signal spectrum. The optimization experiments are performed under electronically nonresonant and resonant conditions. The results are compared and the role of electronic resonances is analyzed. It can be clearly demonstrated that these resonances are of importance for a selective excitation by means of phase and amplitude modulation. The mode selective excitation under nonresonant conditions is determined mainly by the variation of the spectral phase of the laser pulse. Here, the modulation of the spectral amplitudes only has little influence on the mode ratios. In contrast to this, the phase as well as amplitude modulation contributes considerably to the control process under resonant conditions. A careful analysis of the experimental results reveals information about the mechanisms of the mode control, which partially involve molecular dynamics in the electronic states.  相似文献   
4.
An exhaustive search for (1023, 511, 255)-cyclic difference sets has been conducted. A total of 10 non-equivalent (1023, 511, 255)-cyclic difference sets have been found, all of which are members of previously known or conjectured infinite families. A fast and effective autocorrelation test method was utilized that can also facilitate the testing of longer sequences.

  相似文献   

5.
Single-cycle terahertz (THz) transients in the frequency range 0.3-7 THz with electric-field amplitudes of more than 400 kV/cm are generated by four-wave mixing of the fundamental and the second harmonic of 25 fs pulses from a Ti:sapphire amplifier in ionized air. These transients are fully characterized by electro-optic sampling with ZnTe and GaP crystals. One can tune the center frequency of the THz transients by varying the length of the incident pulse. The electric-field amplitude increases linearly with the incident pulse energy.  相似文献   
6.
A variety of biomedical applications requires tailored membranes; fabrication through a mix‐and‐match approach is simple and desired. Polymers based on supramolecular bis‐urea (BU) moieties are capable of modular integration through directed non‐covalent stacking. Here, it is proposed that non‐cell adhesive properties can be introduced in polycaprolactone‐BU‐based membranes by the addition of poly(ethylene glycol) (PEG)‐BU during immersion precipitation membrane fabrication, while unmodified PEG is not retained in the membrane. PEG‐BU addition results in denser membranes with a similar pore size compared to pristine membranes, while PEG addition induces defect formation. Infrared spectroscopy and surface hydrophobicity measurements indicate that PEG‐BU is retained during membrane processing. Additionally, PEG‐BU incorporation successfully leads to poor cell adhesive surfaces. No evidence is observed to indicate PEG retention. The results obtained indicate that the BU system enables intimate mixing of BU‐modified polymers after processing. Collectively, the results provide the first steps toward BU‐based immersion precipitated supramolecular membranes for biomedical applications.  相似文献   
7.
Supramolecular motifs in elastomeric biomaterials facilitate the modular incorporation of additives with corresponding motifs. The influence of the elastomeric supramolecular base polymer on the presentation of additives has been sparsely examined, limiting the knowledge of transferability of effective functionalization between polymers. Here it was investigated if the polymer backbone and the additive influence biomaterial modification in two different types of hydrogen bonding supramolecular systems, that is, based on ureido-pyrimidinone or bis-urea units. Two different cell-adhesive additives, that is, catechol or cyclic RGD, were incorporated into different elastomeric polymers, that is, polycaprolactone, priplast or polycarbonate. The additive effectiveness was evaluated with three different cell types. AFM measurements showed modest alterations on nano-scale assembly in ureido-pyrimidinone materials modified with additives. On the contrary, additive addition was highly intrusive in bis-urea materials. Detailed cell adhesive studies revealed additive effectiveness varied between base polymers and the supramolecular platform, with bis-urea materials more potently affecting cell behavior. This research highlights that additive transposition might not always be as evident. Therefore, additive effectiveness requires re-evaluation in supramolecular biomaterials when altering the polymer backbone to suit the biomaterial application.  相似文献   
8.
Ultrafast X‐ray diffraction experiments require careful adjustment of the spatial overlap between the optical excitation and the X‐ray probe pulse. This is especially challenging at high laser repetition rates. Sample distortions caused by the large heat load on the sample and the relatively low optical energy per pulse lead to only tiny signal changes. In consequence, this results in small footprints of the optical excitation on the sample, which turns the adjustment of the overlap difficult. Here a method for reliable overlap adjustment based on reciprocal space mapping of a laser excited thin film is presented.  相似文献   
9.
Pituitary adenylate cyclase activating polypeptide (PACAP) is a multifunctional and pleiotropic neuropeptide. PACAP has diverse effects in the endocrine system, among others, it plays important roles in oogenesis, implantation and development of the nervous system. However, it is not known whether PACAP is present in the fluids of the human reproductive organs. The aim of the present study was to determine, by means of mass spectrometry and radioimmunoassay, whether PACAP is present in human amniotic fluid, ovarian follicular fluid and cervico-vaginal fluid. Samples were obtained from healthy adult volunteers. Our MALDI TOF and MALDI TOF/TOF spectrometry results show that PACAP38 is present in all of the follicular fluid samples, and PACAP-like immunoreactivity was also measured by radioimmunoassay. However, we did not find the characteristic peak representing the unmodified 38 amino acid form of the peptide in normal cervico-vaginal smear and amniotic fluid samples. Furthermore, we analyzed other body fluids for comparison, such as human nasal fluid, saliva and aqueous humor. PACAP was not found in these latter samples. In summary, the present study provides evidence for the presence of PACAP in human follicular fluid, suggesting a role in oocyte function, but determination of the exact physiological significance awaits further investigation.  相似文献   
10.
Induction of a functional, tight monolayer of renal epithelial cells on a synthetic membrane to be applied in a bioartificial kidney device requires for bio‐activation of the membrane. The current golden standard in bio‐activation is the combination of a random polymeric catechol (L‐DOPA) coating and collagen type IV (Col IV). Here the possibility of replacing this with defined monomeric catechol functionalization on a biomaterial surface using supramolecular ureido‐pyrimidinone (UPy)‐moieties is investigated. Monomeric catechols modified with a UPy‐unit are successfully incorporated and presented in supramolecular UPy‐polymer films and membranes. Unfortunately, these UPy‐catechols are unable to improve epithelial cell monolayer formation over time, solely or in combination with Col IV. L‐DOPA combined with Col IV is able to induce a tight monolayer capable of transport on electrospun supramolecular UPy‐membranes. This study shows that a random polymeric catechol coating cannot be simply mimicked by defined monomeric catechols as supramolecular additives. There is still a long way to go in order to synthetically mimic simple natural structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号