首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   296篇
  免费   9篇
  国内免费   2篇
化学   263篇
力学   1篇
数学   13篇
物理学   30篇
  2021年   1篇
  2020年   1篇
  2019年   5篇
  2017年   1篇
  2016年   5篇
  2015年   4篇
  2014年   6篇
  2013年   9篇
  2012年   9篇
  2011年   13篇
  2010年   12篇
  2009年   14篇
  2008年   37篇
  2007年   29篇
  2006年   28篇
  2005年   23篇
  2004年   24篇
  2003年   18篇
  2002年   24篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   6篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1992年   3篇
  1991年   5篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1968年   1篇
  1960年   1篇
排序方式: 共有307条查询结果,搜索用时 15 毫秒
1.
Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) was synthesized and characterized by UV-vis, IR, (1)H NMR, (13)C NMR, (119)Sn NMR, and mass (FAB(+)) spectroscopies and by single-crystal X-ray diffraction, which proved the presence of a nearly linear Sn-Ru-Sn unit. Crystals of Ru(SnPh(3))(2)(CO)(2)(iPr-DAB).3.5C(6)H(6) form in the triclinic space group P&onemacr; in a unit cell of dimensions a = 11.662(6) ?, b = 13.902(3) ?, c = 19.643(2) ?, alpha = 71.24(2) degrees, beta = 86.91(4) degrees, gamma = 77.89(3) degrees, and V = 2946(3) ?(3). One-electron reduction of Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) produces the stable radical-anion [Ru(SnPh(3))(2)(CO)(2)(iPr-DAB)](*-) that was characterized by IR, and UV-vis spectroelectrochemistry. Its EPR spectrum shows a signal at g = 1.9960 with well resolved Sn, Ru, and iPr-DAB (H, N) hyperfine couplings. DFT-MO calculations on the model compound Ru(SnH(3))(2)(CO)(2)(H-DAB) reveal that the HOMO is mainly of sigma(Sn-Ru-Sn) character mixed strongly with the lowest pi orbital of the H-DAB ligand. The LUMO (SOMO in the reduced complex) should be viewed as predominantly pi(H-DAB) with an admixture of the sigma(Sn-Ru-Sn) orbital. Accordingly, the lowest-energy absorption band of the neutral species will mainly belong to the sigma(Sn-Ru-Sn)-->pi(iPr-DAB) charge transfer transition. The intrinsic strength of the Ru-Sn bond and the delocalized character of the three-center four-electron Sn-Ru-Sn sigma-bond account for the inherent stability of the radical anion.  相似文献   
2.
Use of square-wave voltammetry (SWV) for determination of cefoperazone (CFPZ) in some buffers, bacterial culture, urine, and milk is described. CFPZ provides a specific voltammetric signal which is affected by pH and solution components. Determination of CFPZ in Britton–Robinson buffer, pH 4.4, is sensitive with a low detection limit (about 0.5 nmol L–1). In a more complex medium (bacterial 2YT medium, pH 7.2) the detection limit was approximately 1.5 mol L–1. We provide evidence that SWV is a suitable and quick method for CFPZ determination in a culture of living bacteria without separation of biomass. We have found big differences between methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA) in cultivation in the presence of CFPZ, depending on time. When CFPZ is cleaved by penicillinase, a new SWV peak b appears at more positive potentials. This peak rises both with increasing concentration of enzyme and with cleavage time while the original CFPZ peak is simultaneously decreasing. We determined the concentration of CFPZ in the drug Pathozone by the standard addition method and achieved good agreement with the declared value of CFPZ in the drug. With a simple pretreatment procedure it is possible to determine CFPZ in milk; for urine no pretreatment was required. Using SWV we could detect CFPZ concentrations as low as 500 nmol L–1 in bovine milk and human urine.  相似文献   
3.
4.
Electrochromatography (EC) in microfluidic chips is emerging as an attractive alternative to capillary electrophoresis (CE) for on-chip separations. This review summarizes recent developments in the rapidly growing area of chip electrochromatography with a focus on "column" technologies. Relevant achievements are summarized according to the types of stationary phase used for the separations including open channels, microfabricated structures, and channels packed with beads or containing a porous monolith. The advantages and disadvantages of each, as well as practical aspects of their application, are discussed. The analytical performance of these devices is demonstrated with separations involving various families of compounds mostly in the reversed-phase chromatographic mode.  相似文献   
5.
The electroanalytical determination of avidin in solution, in a carbon paste, and in a transgenic maize extract was performed in acidic medium at a carbon paste electrode (CPE). The oxidative voltammetric signal resulting from the presence of tyrosine and tryptophan in avidin was observed using square-wave voltammetry. The process could be used to determine avidin concentrations up to 3 fM (100 amol in 3 l drop) in solution, 700 fM (174 fmol in 250 l solution) in an avidin-modified electrode, and 174 nM in a maize seed extract. In the case of the avidin-modified CPE, several parameters were studied in order to optimize the measurements, such as electrode accumulation time, composition of the avidin-modified CPE, and the elution time of avidin. In addition, the avidin-modified electrode was used to detect biotin in solution (the detection limit was 7.6 pmol in a 6 l drop) and to detect biotin in a pharmaceutical drug after various solvent extraction procedures. Comparable studies for the detection of biotin were developed using HPLC with diode array detection (HPLC-DAD) and flow injection analysis with electrochemical detection, which allowed biotin to be detected at levels as low as 614 pM and 6.6 nM, respectively. The effects of applied potential, acetonitrile content, and flow rate of the mobile phase on the FIA-ED signal were also studied.  相似文献   
6.
Herein we describe in detail the bonding properties and electrochemical behavior of the first known triosmium carbonyl clusters with a coordinated redox-active ligand 4,4',5,5'-tetramethyl-2,2'-biphosphinine (tmbp), the phosphorus derivative of 2,2'-bipyridine. The clusters investigated were [Os(3)(CO)(10)(tmbp)] (1) and its derivative [Os(3)(CO)(9)(PPh(3))(tmbp)] (2). The crystal structures of both clusters are compared with those of relevant compounds; they served as the basis for density functional theory (DFT and time-dependent DFT) calculations. The experimental and theoretical data reveal an unexpected and unprecedented bridging coordination mode of tmbp, with each P atom bridging two metal atoms. The tmbp ligand is formally reduced by transfer of two electrons from the triangular cluster core that consequently lacks one of the metal-metal bonds. Both 1 and 2 therefore represent 50e(-) clusters with a coordinated 8e(-) donor, [tmbp](2-). The HOMO and LUMO of 1 and 2 possess a predominant contribution from different pi*(tmbp) orbitals, implying that the lowest energy excited state possesses a significant intraligand character. This is in agreement with the photostability of these clusters. DFT calculations also predict the experimentally observed structure of 1 to be the most stable one in a series of several plausible structural isomers. Stepwise two-electron electrochemical reduction of 1 and 2 results in dissociation of CO and PPh(3), respectively, and formation of the [Os(3)(CO)(9)(tmbp)](2-) ion. The initially produced radical anions of the parent clusters, in which the odd electron is predominantly localized on the tmbp ligand, are sufficiently stable at low temperatures and can be observed with IR spectroelectrochemistry. The electron-deficiency of the cluster core in 1 permits facile electrocatalytic substitution of a CO ligand by tertiary phosphane and phosphite donors.  相似文献   
7.
A novel stationary phase for micro ion chromatography has been prepared by coating a porous poly(butyl methacrylate-co-ethylene dimethacrylate-co-2-acrylamido-2-methyl-1-propanesulfonic acid) monolith with quaternary amine-functionalized latex particles via simple electrostatic binding. This stationary phase enabled the separation of saccharides in the mobile phase with a high-pH value consisting of aqueous ammonia solution in anion-exchange mode using evaporative light scattering for detection. Effects of both porous properties of the monolithic stationary phase and chromatographic conditions on the separation ability were studied. Under optimized conditions, an efficient separation of seven saccharides was achieved in less than 10 min. The stationary phase also enables the separation of saccharides obtained by the enzymatic hydrolysis of corn starch.  相似文献   
8.
IR, UV-vis, and EPR spectroelectrochemistry at variable temperatures and in different solvents were applied to investigate in situ the formation of electroactive molecular chains with a nonbridged Os-Os backbone, in particular, the polymer [Os(0)(bpy)(CO)(2)](n) (bpy = 2,2'-bipyridine), from a mononuclear Os(II) carbonyl precursor, [Os(II)(bpy)(CO)(2)Cl(2)]. The one-electron-reduced form, [Os(II)(bpy(.)(-))(CO)(2)Cl(2)](-), has been characterized spectroscopically at low temperatures. This radical anion is the key intermediate in the electrochemical propagation process responsible for the metal-metal bond formation. Unambiguous spectroscopic evidence has been gained also for the formation of [[Os(0)(bpy(*)(-))(CO)(2)](-)](n), the electron-rich electrocatalyst of CO(2) reduction. The polymer species are fairly well soluble in butyronitrile, which is important for their potential utilization in nanoscience, for example, as conducting molecular wires. We have also shown that complete solubility is accomplished for the monocarbonyl-acetonitrile derivative of the polymer, [Os(0)(bpy)(CO)(MeCN)(2)Cl](n).  相似文献   
9.
The preparation of monolithic poly(butyl methacrylate-co-ethylene dimethacrylate) capillary columns using photoinitiated in situ polymerization within 200 microm i.d. capillaries and their application for microHPLC separations of proteins have been studied. The low resistance to flow characteristic of monolithic columns, enabled the use of very high flow rates of up to 100 microL/min representing a flow velocity of 87 mm/s. Very good separations of a model protein mixture consisting of ribonuclease A, cytochrome c, myoglobin, and ovalbumin was achieved in less than 40 s using a very simple single step gradient of the mobile phase. Interestingly, no effect of the pore size on the separations of proteins was observed for these monolithic columns within the size range of 0.66-2.2 microm. The monolithic microHPLC columns are found very robust and no changes in the long term separation performance and back pressure were observed.  相似文献   
10.
Copolymerizations of hexafluoroisobutylene (HFIB) with vinyl pentafluorobenzoate (VPFB) and vinyl trifluoroacetate (VTFA) were carried out in bulk using perfluorodibenzoyl peroxide as the radical initiator. The copolymers obtained were characterized by proton and fluorine NMR spectroscopy. The monomer reactivity ratios in the polymerization of HFIB with VPFB were r1 (HFIB) = 0, r2 (VPFB) = 0.373, and r1r2 = 0. The results indicated that these copolymers have alternating structures. Similarly, the copolymers of HFIB and VTFA also showed alternating structures. The films of HFIB‐co‐VPFB were prepared by casting THF solution of polymers. Films obtained were flexible and transparent. The refractive indices of copolymers were 1.4549, 1.4490, and 1.4438 at 532, 633, and 839 nm, respectively. The average Tgs of HFIB‐co‐VTFA and HFIB‐co‐VPFB were 52 and 71 °C, respectively. From these results, the Tg of the hypothetical HFIB homopolymer is postulated to be in between 70 and 90 °C, which may be useful in the assessment of Tgs of HFIB copolymers with other vinyl monomers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号