首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
化学   8篇
物理学   14篇
  2023年   1篇
  2019年   1篇
  2018年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2001年   2篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
2 SiO4:Mn phosphor was evaluated for use in radiation detectors of medical imaging systems. Zn2SiO4:Mn was used in the form of laboratory-prepared fluorescent layers (screens) with coating weights from 18 to 150 mg/cm2. The phosphor was excited to luminescence by low-energy X-raysusing X-raytube voltages ranging from 15 to 50 kVp. The number of emitted optical photons per incident X-rayquantum was thus determined for various X-rayenergies and phosphor coating weights. The optical emission spectrum was also measured and it was used to evaluate the spectral compatibility of Zn2SiO4:Mn with radiographic films, photocathodes and the Si photodiode. Finally, phosphor optical properties were estimated by fitting a theoretical model to experimental data. Results showed that Zn2SiO4:Mn is more efficient for low-energy X-rays. Its intrinsic conversion efficiency was found equal to 0.08, which is comparable to that of actually used phosphors. Zn2SiO4:Mn was also adequately compatible with orthochromatic films and the ES-20 photocathode, thus being appropriate for low-voltage radiography and fluoroscopy. Received: 31 July 1998/Accepted: 3 August 1998  相似文献   
2.
The analysis of information derived from magnetic resonance imaging (MRI) and spectroscopy (MRS) has been identified as an important indicator for discriminating among different brain pathologies. The purpose of this study was to investigate the efficiency of the combination of textural MRI features and MRS metabolite ratios by means of a pattern recognition system in the task of discriminating between meningiomas and metastatic brain tumors. The data set consisted of 40 brain MR image series and their corresponding spectral data obtained from patients with verified tumors. The pattern recognition system was designed employing the support vector machines classifier with radial basis function kernel; the system was evaluated using an external cross validation process to render results indicative of the generalization performance to “unknown” cases. The combination of MR textural and spectroscopic features resulted in 92.15% overall accuracy in discriminating meningiomas from metastatic brain tumors. The fusion of the information derived from MRI and MRS data might be helpful in providing clinicians a useful second opinion tool for accurate characterization of brain tumors.  相似文献   
3.
In this study, the quality of medical images produced by X-ray phosphor screens is described by a model based on the light generation and emission properties of the phosphor material. Combined detector gain (CDG), modulation transfer function (MTF), detective quantum efficiency (DQE) and information capacity (IC) of the screens were expressed and evaluated as functions of emitted optical fluence, incident X-ray fluence and emitted optical spectrum. Phosphor screens with coating thickness ranging from 21 mg/cm2 to 137 mg/cm2 were prepared in the laboratory and were irradiated by X-rays with X-ray voltages from 50 to 140 kVp. Experimental data were obtained in both transmission and reflection modes of measurement (light emission from both screen sides). Results showed that most image quality parameters (CDG, MTF, DQE) depend strongly on phosphor screen thickness. CDG and DQE also depend on X-ray tube voltage. However, the total quantity of information (IC), which depends on both the incident X-ray fluence and phosphor material type, was not found to be significantly affected by phosphor thickness. Received: 7 September 2000 / Revised version: 8 January 2001 / Published online: 27 April 2001  相似文献   
4.
In this study Y3Al5O12: Ce powder scintillator was evaluated for use in X-ray imaging detectors. This phosphor, also known as YAG: Ce scintillator or P-46 phosphor, is a non-hygroscopic, emitting green light with very short decay time. These properties are very attractive for X-ray imaging. Y3Al5O12: Ce powder was used to prepare various test screens (33–166 mg/cm2). Absolute luminescence efficiency measurements were performed for various X-ray tube voltages (50–130 kVp). In addition parameters related to image quality such as the modulation transfer function and the detective quantum efficiency were examined. A theoretical model, describing radiation and light transfer, was employed to fit experimental data and to estimate values of optical parameters. Absolute efficiency was found to decrease with X-ray tube voltage. Highest efficiency was obtained for the 107 mg/cm2 screen. Light attenuation coefficients were close to those of green emitting rare earth scintillators. At low spatial frequencies the detective quantum efficiency was high for the 107–166 mg/cm2 screens. The light emission efficiency and imaging performance of Y3Al5O12: Ce was not better than currently employed scintillators. However due to its very fast response and high spectral compatibility to optical sensors it may be considered for use in digital imaging detectors.  相似文献   
5.
The superconducting transition temperature of the high-Tc SmO1-xFxFeAs superconductors increases monotonically as the F-doping level x increases to 0.20. High-pressure magnetization experiments reveal a strong sensitivity of Tc to interatomic distances in the underdoped regime (x 相似文献   
6.
In this study, a pattern recognition system has been developed for the discrimination of multiple sclerosis (MS) from cerebral microangiopathy (CM) lesions based on computer-assisted texture analysis of magnetic resonance images. Twenty-three textural features were calculated from MS and CM regions of interest, delineated by experienced radiologists on fluid attenuated inversion recovery images and obtained from 11 patients diagnosed with clinically definite MS and from 18 patients diagnosed with clinically definite CM. The probabilistic neural network classifier was used to construct the proposed pattern recognition system and the generalization of the system to unseen data was evaluated using an external cross validation process. According to the findings of the present study, statistically significant differences exist in the values of the textural features between CM and MS: MS regions were darker, of higher contrast, less homogeneous and rougher as compared to CM.  相似文献   
7.
Three-dimensional (3D) texture analysis of volumetric brain magnetic resonance (MR) images has been identified as an important indicator for discriminating among different brain pathologies. The purpose of this study was to evaluate the efficiency of 3D textural features using a pattern recognition system in the task of discriminating benign, malignant and metastatic brain tissues on T1 postcontrast MR imaging (MRI) series. The dataset consisted of 67 brain MRI series obtained from patients with verified and untreated intracranial tumors. The pattern recognition system was designed as an ensemble classification scheme employing a support vector machine classifier, specially modified in order to integrate the least squares features transformation logic in its kernel function. The latter, in conjunction with using 3D textural features, enabled boosting up the performance of the system in discriminating metastatic, malignant and benign brain tumors with 77.14%, 89.19% and 93.33% accuracy, respectively. The method was evaluated using an external cross-validation process; thus, results might be considered indicative of the generalization performance of the system to "unseen" cases. The proposed system might be used as an assisting tool for brain tumor characterization on volumetric MRI series.  相似文献   
8.
The flexibility of the structure of Prussian blue analogues and its ability to incorporate a variety of competing magnetic interactions have allowed the design of mixed ferro-ferrimagnets, which span the whole spectrum of magnetic behavior, including the rare phenomenon of magnetization reversal in response to a change in temperature. Hydrostatic pressure is used here to induce multiple reversals of the direction of the spontaneous magnetization in the trimetallic Prussian blue analogue, Rb0.64Ni0.31Mn0.87[Fe(CN)6].2.8H2O. Remarkably, the magnetic response is extremely sensitive to pressure, and the magnetization flips from positive to negative and back to positive in a very narrow pressure range (0 < P < 0.6 kbar). A further increase in pressure to 4.0 kbar induces an internal redox reaction, and the magnetic order switches from ferrimagnetic to bulk ferromagnetism.  相似文献   
9.
The effect of X-ray illumination on the structural properties of the mixed valence Prussian blue analogue CsFe(II)[Cr(III)(CN)6] has been studied by time-dependent high-resolution synchrotron X-ray diffraction. Abrupt isosymmetric phase transitions, accompanied by dramatic volume collapse, were found in the temperature range 245-265 K, induced by sudden Fe(II) spin transitions from the high spin (HS) (4t(2g)2e(g), S = 2) to the low spin (LS) (6t(2g)0e(g), S = 0) configuration. Absorption of X-ray photons generates photoexcited Fe(II)(LS) domains whose size rapidly grows with time until the percolation threshold is reached and the structure collapse is triggered. The persistent character of the optically excited spin crossover states derives from the strong electron-phonon coupling, associated with the large lattice relaxations, which accompany the internal spin rearrangements. It is thus possible to use X-ray light in a controllable and efficient way to induce photoswitching between the ground and hidden or inaccessible excited states in suitably selected multistable materials in the bulk.  相似文献   
10.
In information theory, entropy expresses the information gain obtained after detection of a signal concerning the state of a parameter of interest. In this study, entropy has been expressed in terms of physical quantities (emitted optical fluence and MTF) related to the imaging performance of phosphor materials, which are employed in medical imaging radiation detectors. Four phosphor materials, used in the form of laboratory-prepared fluorescent layers (screens), were compared on the basis of their entropy performance. Measurements were performed using 30- and 80-kVp X-ray beams often employed in X-ray imaging. Results showed that phosphor materials with high density and effective atomic number exhibit high entropy performance, especially at the higher X-ray tube voltage of 80 kVp. Entropy values are also affected by the type of activator, which determines the intrinsic X-ray-to-light conversion efficiency, and the spectrum of emitted light. The proximity of the incident X-ray quanta energy to the energy of the K-shell threshold for photoelectric absorption is an additional important factor which increases entropy. This effect was more apparent in the performance of yttrium-based phosphors at the lower voltage of 30 kVp. Received: 7 January 2000 / Accepted: 28 March 2000 / Published online: 23 August 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号