首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
物理学   3篇
  2016年   2篇
  2014年   1篇
排序方式: 共有3条查询结果,搜索用时 832 毫秒
1
1.
The rise of semiconductor‐based pump sources such as InxGa1‐xN‐laser diodes or frequency‐doubled optically pumped semiconductor lasers with emission wavelengths in the blue encourages a revisitation of the rare‐earth ions Pr3+, Sm3+, Tb3+, Dy3+, Ho3+ and Er3+ with respect to their properties as active ions in crystalline solid‐state laser materials with direct emission in the visible spectral range. Nowadays, some of these blue‐pumped visible lasers compete with Nd3+‐lasers in terms of efficiency and direct lasing at various colors from the cyan‐blue to the deep red can be addressed in very simple and compact laser setups. This paper highlights the spectroscopic properties of suitable rare‐earth ions for visible lasing and reviews the latest progress in the field of blue‐pumped visible rare‐earth doped solid‐state lasers.

  相似文献   

2.
We report on diode-pumped laser operation of Pr3+,Mg2+:SrAl12O19 at lasing wavelengths of λ L = 724.4 nm, λ L = 643.5 nm, and λ L = 622.8 nm. Furthermore, the laser threshold could be reached in the green spectral range. By pumping the crystal longitudinally from each side with two polarization beam combined InGaN laser diodes, a total pump power of ≈4 W was available. In the deep red spectral range, a maximum output power of 564 mW was achieved with a maximum slope efficiency of 50 % with respect to the absorbed pump power. The maximum possible internal losses were estimated to ≈1 %. Beam quality factors M 2 were in the range of 1.2–1.5.  相似文献   
3.
In this work Tb3+ is revisited as a laser ion for efficient visible laser operation. In detailed spectroscopic investigations of absorption and fluorescence properties we reveal, that neither the spin‐forbidden transitions nor the widespread belief of excited state absorption or upconversion into 4f75d1‐states ultimately prevent efficient visible laser operation in Tb3+‐doped fluorides. In contrast, the rise of blue semiconductor‐based pump sources enabled us to achieve slope efficiencies up to 58% around 545 nm in the green spectral region in highly Tb3+‐doped LiLuF4, LiYF4, KY3F10, β‐BaLu2F8 and LaF3 crystals. In addition, we obtained laser emission from Tb3+ in the yellow spectral region around 585 nm with slope efficiencies approaching 20%. To the best of our knowledge, these results represent the first continuous wave laser operation of Tb3+‐doped crystals and demonstration of laser oscillation on the 5D4 → 7F4‐transition in this ion.

  相似文献   

1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号