首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
化学   2篇
力学   12篇
物理学   10篇
  2020年   3篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1992年   2篇
排序方式: 共有24条查询结果,搜索用时 31 毫秒
1.
Abstract

On the perspective to develop CuO–TiO2 MOS, multilayered Cu and Ti thin layers were alternatively deposited on silicon wafers using 25?keV Ar?+?ion beam sputtering and, subsequently, oxidized by thermal annealing in air at 400?°C for 24?h. The deposited films have variable ratios of the Cu and Ti % at. One of the main goal is to obtain such multilayers avoiding the presence of Cu–Ti–O compounds. The samples were characterized in terms of composition (by RBS and SIMS analyses) and morphology (by AFM and SEM investigations). In particular, SIMS maps allows to observe the spatial distribution and thickness of each phase of the Cu/Ti multilayers, and further to observe Cu diffusion and mixing with Ti, as well as phase separation of CuO and TiO2 in the samples. The reasons of this effect represent an open issue that has to investigated, in order to improve the MOS fabrication.  相似文献   
2.
Diffusion of Li ions in thin sandwich films with copper or lead encompassing layers (obtained by ion beam sputtering deposition technique) has been studied. These metals are promising candidates for electrodes in lithium-ion batteries. It is because they exhibit an ability to store and release Li ions during charging and discharging processes. Lithium diffusion was induced in samples by thermal annealing cycles. The lithium depth profile was measured using a nondestructive neutron depth profiling technique after each thermal annealing step. The analysis of experimental data allowed to evaluate the lithium depth profiles and directly calculate the diffusion coefficients.  相似文献   
3.
The instantaneous and time-averaged flow fields in the tip region of a ducted marine propulsor are examined. In this flow, a primary tip-leakage vortex interacts with a secondary, co-rotating trailing edge vortex and other co- and counter-rotating vorticity found in the blade wake. Planar particle imaging velocimetry (PIV) is used to examine the flow in a plane approximately perpendicular to the mean axis of the primary vortex. An identification procedure is used to characterize multiple regions of compact vorticity in the flow fields as series of Gaussian vortices. Significant differences are found between the vortex properties from the time-averaged flow fields and the average vortex properties identified in the instantaneous flow fields. Variability in the vortical flow field results from spatial wandering of the vortices, correlated fluctuations of the vortex strength and core size, and both correlated and uncorrelated fluctuations in the relative positions of the vortices. This variability leads to pseudo-turbulent velocity fluctuations. Corrections for some of this variability are performed on the instantaneous flow fields. The resulting processed flow fields reveal a significant increase in flow variability in a region relatively far downstream of the blade trailing edge, a phenomenon that is masked through the process of simple averaging. This increased flow variability is also accompanied by the inception of discrete vortex cavitation bubbles, which is an unexpected result, since the mean flow pressures in the region of inception are much higher than the vapor pressure of the liquid. This suggests that unresolved fine-scale vortex interactions and stretching may be occurring in the region of increased flow variability.  相似文献   
4.
5.
A new orthogonal-plane cinema-stereoscopic particle image velocimetry (OPCS-PIV) diagnostic has been used to measure the dynamics of three-dimensional turbulence–flame interactions. The diagnostic employed two orthogonal PIV planes, with one aligned perpendicular and one aligned parallel to the streamwise flow direction. In the plane normal to the flow, temporally resolved slices of the nine-component velocity gradient tensor were determined using Taylor’s hypothesis. Volumetric reconstruction of the 3D turbulence was performed using these slices. The PIV plane parallel to the streamwise flow direction was then used to measure the evolution of the turbulence; the path and strength of 3D turbulent structures as they interacted with the flame were determined from their image in this second plane. Structures of both vorticity and strain-rate magnitude were extracted from the flow. The geometry of these structures agreed well with predictions from direct numerical simulations. The interaction of turbulent structures with the flame also was observed. In three dimensions, these interactions had complex geometries that could not be reflected in either planar measurements or simple flame–vortex configurations.  相似文献   
6.
Pairs of unequal strength, counter-rotating vortices were produced in order to examine the inception, dynamics, and acoustic emission of cavitation bubbles in rapidly stretching vortices. The acoustic signatures of these cavitation bubbles were characterized during their inception, growth, and collapse. Growing and collapsing bubbles often produced a sharp, broadband, pop sound. The spectrum of these bubbles, and the peak resonant frequency can generally be related to quiescent flow bubble dynamics and corresponding resonant frequencies. However, some elongated cavitation bubbles produced a short tonal burst, or chirp, with frequencies on the order of a few kilohertz. Theses frequencies are too low to be related to resonant frequencies of a bubble in a quiescent flow. Instead, the frequency content of the acoustic signal during bubble inception and growth is related to the volumetric oscillations of the bubble while it interacted with vortical flow that surrounds the bubble (i.e., the resonant frequency of the vortex-bubble system). A relationship was determined between the observed peak frequency of the oscillations, the highly stretched vortex properties, and the water nuclei content. It was found that different cavitation spectra could relate to different flow and fluid properties and therefore would not scale in the same manner.  相似文献   
7.
This study quantifies degradation of polyethylene oxide (PEO) and polyacrylamide (PAM) polymer solutions in large diameter (2.72 cm) turbulent pipe flow at Reynolds numbers to 3 × 105 and shear rates greater than 105 1/s. The present results support a universal scaling law for polymer chain scission reported by Vanapalli et al. (2006) that predicts the maximum chain drag force to be proportional to Re 3/2, validating this scaling law at higher Reynolds numbers than prior studies. Use of this scaling gives estimated backbone bond strengths from PEO and PAM of 3.2 and 3.8 nN, respectively. Additionally, with the use of synthetic seawater as a solvent the onset of drag reduction occurred at higher shear rates relative to the pure water solvent solutions, but had little influence on the extent of degradation at higher shear rates. These results are significant for large diameter pipe flow applications that use polymers to reduce drag.  相似文献   
8.
The temporal evolution of the strain rate on a turbulent premixed flame was measured experimentally using cinema-stereoscopic particle image velocimetry. Turbulence strains a flame due to velocity gradients associated both directly with the turbulence and those caused by the hydrodynamic instability, which are initiated by the turbulence. The development of flame wrinkles caused by both of these mechanisms was observed. Wrinkles generated by the turbulence formed around vortical structures, which passed through the flame and were attenuated. After the turbulent structures had passed, the hydrodynamic instability flow pattern developed and caused additional strain. The hydrodynamic instability also caused the growth of small flame front perturbations into large wrinkles. In the moderately turbulent flame investigated, it was found that the evolution of the strain rate caused by turbulence–flame interactions followed a common pattern involving three temporal regimes. In the first, the turbulence exerted extensive (positive) strain on the flame, creating a wrinkle that had negative curvature (concave towards the reactants). This was followed by a transition period, leading into the third regime in which the flow pattern and strain rate were dominated by the hydrodynamic instability mechanism. It was also found that the magnitudes of the strain rate in the first and third regimes were similar. Hence, the hydrodynamic instability mechanism caused significant strain on a flame and should be included in turbulent combustion models.  相似文献   
9.

Background  

cAMP is an ubiquitous second messenger mediating various neuronal functions, often as a consequence of increased intracellular Ca2+ levels. While imaging of calcium is commonly used in neuroscience applications, probing for cAMP levels has not yet been performed in living vertebrate neuronal tissue before.  相似文献   
10.
A digital dual-camera cinematographic particle image velocimetry (CPIV) system has been developed to provide time-resolved, high resolution flow measurements in high-Reynolds number, turbulent flows. Two high-speed CMOS cameras were optically combined to acquire double-pulsed CPIV images at kilohertz frame rates. Bias and random errors due to camera misalignment, camera vibration, and lens aberration were corrected or estimated. Systematic errors due to the camera misalignment were reduced to less than 2 pixels throughout the image plane using mechanical alignment, resulting in 3.1% positional uncertainty of velocity measurements. Frame-to-frame uncertainties caused by mechanical vibration were eliminated with the aid of digital image calibration and frame-to-frame camera registration. This dual-camera CPIV system is capable of resolving high speed, unsteady flows with high temporal and spatial resolutions. It also allows time intervals between the two exposures down to 4 μs, enabling the measurements of speed flows 5–10 times higher than possible with frame-straddling using similar cameras. A turbulent shallow cavity was then chosen as the experimental object investigated by this dual-camera CPIV technique.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号