首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   2篇
化学   6篇
物理学   8篇
  2016年   1篇
  2014年   2篇
  2013年   3篇
  2011年   1篇
  2010年   1篇
  2005年   1篇
  2002年   1篇
  2000年   3篇
  1985年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
The dewetting dynamics of solid films of hydrogen isotopes, quench-condensed on a graphite substrate, was measured at various temperatures below desorption by observing the stray light from the film. A schematic model describing the dewetting process by surface diffusion is presented, which agrees qualitatively with our data. The activation energies of different hydrogen isotopes for surface diffusion were determined. The time constant for dewetting of a quench-condensed film at the working temperature of 1.86 K of the mainz neutrino mass experiment was extrapolated. Received 30 December 1999  相似文献   
2.
The Mainz neutrino-mass experiment investigates the endpoint region of the tritium β-decay spectrum with a MAC-E spectrometer to determine the mass of the electron antineutrino. By the recent upgrade, the former problem of dewetting T2 films has been solved, and the signal-to-background ratio was improved by a factor of 10. The latest measurement leads to $m_\nu ^2 = - 3.7 \pm 5.3(stat.) \pm 2.1(syst.){{eV^2 } \mathord{\left/ {\vphantom {{eV^2 } {c^4 }}} \right. \kern-0em} {c^4 }}$ , from which an upper limit of $m_\nu < 2.8{{eV^2 } \mathord{\left/ {\vphantom {{eV^2 } {c^2 }}} \right. \kern-0em} {c^2 }}(95\% C.L.)$ is derived. Some indication for the anomaly, reported by the Troitsk group, was found, but its postulated half-year period is contradicted by our data. To push the sensitivity on the neutrino mass below 1 eV/c 2, a new larger MAC-E spectrometer is proposed. Besides its integrating mode, it could run in a new nonintegration operation MAC-E-TOF mode.  相似文献   
3.
The Raman depolarization ratios for individual Q1(J”) branch lines of all diatomic hydrogen isotopologues – H2, HD, D2, HT, DT, and T2 – were measured, for all rotational levels with population larger than 1/100 relative to the Boltzmann maximum at room temperature. For these measurements, the experimental setup normally used for the monitoring of the tritiated hydrogen molecules at KArlsruhe TRItium Neutrino experiment was adapted to optimally control the excitation laser power and polarization, and to precisely define the Raman light collection geometry. The measured Raman depolarization values were compared to theoretical values, which are linked to polarizability tensor quantities. For this, the ‘raw data’ were corrected taking into account distinct aspects affecting Raman depolarization data, including (1) excitation polarization impurities; (2) extended Raman excitation volumes; and (3) Raman light collection over finite solid angles. Our corrected depolarization ratios of the hydrogen isotopologues agree with the theoretical values (based on ab initio quantum calculations by R.J. LeRoy, University of Waterloo, Canada) to better than 5% for nearly all of the measured Q1(J”) lines, with 1σ confidence level. The results demonstrate that reliable, accurate Raman depolarization ratios can be extracted from experimental measurements, which may be substantially distorted by excitation polarization impurities and by geometrical effects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
4.
In this article, we address the notoriously difficult problem to quantitatively link measured Raman depolarization values to theoretical polarizability tensor quantities, since quantum calculations do not incorporate experimental parameters. For this, we introduce a numerical model to calculate, for realistic experimental configurations, effective Raman line strength functions, Φ, which find their way into depolarization ratios, ρ. The model is based on interlinked integrations over the angles in the light collection path and a finite Raman source volume along the excitation laser beam. The model deals also with the conditional aperture parameters, associated with more than one optical component in the light collection path. Finally, we also can take into account polarization aberrations introduced by the sample cell windows. The procedure was fully tested for Raman depolarization spectra of selected hydrogen isotopologues. Distinct aspects affecting Raman depolarization data were validated, namely: (1) excitation polarization impurities; (2) extended Raman excitation volumes; (3) Raman light collection over finite solid angles; and (4) polarization aberrations introduced by optics in the light collection path. The correction of the experimental measurement data for the aforementioned effects resulted in depolarization ratios for the Q1(J " ) Raman lines of H2 and T2, which mostly differed by less than 5% from those obtained by quantum‐calculations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
5.
6.
7.
A convenient and efficient catalyst system for the hydrogenation of aliphatic nitriles towards the corresponding primary amines in high to excellent yields is presented. In addition, aromatic nitriles are reduced smoothly, too. The use of low catalyst loadings and molecular hydrogen make this protocol an attractive methodology.  相似文献   
8.
Characterizing intact multiprotein complexes in terms of both their mass and size by ion mobility-mass spectrometry is becoming an increasingly important tool for structural biology. Furthermore, the charge states of intact protein complexes can dramatically influence the information content of gas-phase measurements performed. Specifically, protein complex charge state has a demonstrated influence upon the conformation, mass resolution, ion mobility resolution, and dissociation properties of protein assemblies upon collisional activation. Here we present the first comparison of charge-reduced multiprotein complexes generated by solution additives and gas-phase ion-neutral reaction chemistry. While the charge reduction mechanism for both methods is undoubtedly similar, significant gas-phase activation of the complex is required to reduce the charge of the assemblies generated using the solution additive strategy employed here. This activation step can act to unfold intact protein complexes, making the data difficult to correlate with solution-phase structures and topologies. We use ion mobility-mass spectrometry to chart such conformational effects for a range of multi-protein complexes, and demonstrate that approaches to reduce charge based on ion-neutral reaction chemistry in the gas-phase consistently produce protein assemblies having compact, ‘native-like’ geometries while the same molecules added in solution generate significantly unfolded gas-phase complexes having identical charge states.  相似文献   
9.
This paper reports on the improved Mainz experiment on tritium spectroscopy which yields a 10 times higher signal to background ratio than before. The main experimental effects and systematic uncertainties have been investigated in side experiments, and possible error sources have been eliminated. Extensive data taking took place in the years 1997 to 2001. A residual analysis of the data sets yields for the square of the electron antineutrino mass the final result of eV2/c4. We derive an upper limit of eV/c2 at 95% confidence level for the mass itself.Received: 21 December 2004, Published online: 9 March 2005PACS: 1460.Pq, 23.40.-s, 2930.Dn, 2930.AjCh. Kraus: Present address: Department of physics, Queens university, K7L3N6 Kingston, CanadaB. Bornschein: Present address: Forschungszentrum Karlsruhe, Tritiumlabor, 76344 Eggenstein-Leopoldshafen, GermanyL. Bornschein: Present address: Universität Karlsruhe (TH), Institut für exp. Kernphysik, Postfach 6980, 76128 Karlsruhe, GermanyA. Kovalik: On leave from the Nuclear Physics Institute of the Acad. Sci. Czech Republic, 25068 Rez near PragueB. Ostrick: Present address: Helmholtz-Institut für Strahlen und Kernphysik, Universität Bonn, 53115 Bonn, Germany Corresponding author: E.W. OttenCh. Weinheimer: Present address: Institut für Kernphysik, Universität Münster, 48149 Münster, GermanyThis paper comprises principal parts of the PhD theses of Christine Kraus, Beate Bornschein and Lutz Bornschein.  相似文献   
10.
Sturm  M.  Schl?sser  M.  Lewis  R. J.  Bornschein  B.  Drexlin  G.  Telle  H. H. 《Laser Physics》2010,20(2):493-507
We have recorded Raman spectra for all hydrogen isotopologues, using a CW Nd:YVO4 laser (5 W output power at 532 nm) and a high-throughput (f/1.8) spectrograph coupled to a Peltier-cooled (200 K) CCD-array detector (512 × 2048 pixels). A (static) gas cell was used in all measurements. We investigated (i) “pure” fillings of the homonuclear isotopologues H2, D2, and T2; (ii) equilibrated binary fillings of H2 + D2, H2 + T2, and D2 + T2, thus providing the heteronuclear isotopologues HD, HT, and DT in a controlled manner; and (iii) general mixtures containing all isotopologues at varying concentration levels. Cell fillings within the total pressure range 13–985 mbar were studied, in order to determine the dynamic range of the Raman system and the detection limits for all isotopologues. Spectra were recorded for an accumulation period of 1000 s. The preliminary data evaluation was based on simple peak-height analysis of the ro-vibrational Q1-branches, yielding 3σ measurement sensitivities of 5 × 10−3, 7 × 10−3, and 25 × 10−3 mbar for the tritium-containing isotopologues T2, DT, and HT, respectively. These three isotopologues are the relevant ones for the KATRIN experiment and in the ITER fusion fuel cycle. While the measurement reported here were carried out with static-gas fillings, the cells are also ready for use with flowing-gas samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号