首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   2篇
物理学   7篇
  2011年   1篇
  2010年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  1983年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Gélat PN  Zeqiri B  Hodnett M 《Ultrasonics》2005,43(5):321-330
This paper describes a theoretical study of the way in which a circular aperture placed in front of a plane-piston modifies the ultrasonic field it generates. Specifically, the radiated acoustic power transmitted by the aperture and the radiation force experienced by an absorbing target placed in the transmitted beam, are evaluated at a distance from the exit-side of the aperture. The calculations used a finite element (FE) method, in conjunction with a surface Helmholtz integral formulation to solve the fluid/structure interaction problem. The PAFEC (Program for Automatic Finite Element Computation) vibroacoustics software was used for the FE calculations and the implementation of the surface Helmholtz integral formulation method. Acoustic pressures and particle velocities were computed at required points, whilst accounting for the presence of the aperture in the medium, together with its dynamic properties when subjected to an incident sound field. This enabled the calculation of the radiation force on the absorber and its variation with the applied aperture diameter was investigated. As part of the validation process for the new FE aperture model, the ratio of radiation force to radiated acoustic power obtained using the FE method in the unapertured case, through the use of the Rayleigh integral, yielded good agreement with results obtained through an analytical solution. The study has been carried out to provide a better understanding of the factors affecting the measurement uncertainty for the aperture method of determining the effective radiating area (A(ER)) of physiotherapy ultrasound treatment heads.  相似文献   
2.
This paper describes the application of a novel broadband acoustic sensor to evaluating the acoustic emissions from cavitation produced by a typical commercial 20 kHz sonochemical horn processor. Investigations of the reproducibility of the processor, and of the variation in cavitation emissions as a function of output setting and sensor location are described, and resulting trends discussed in terms of the broadband integrated power in the megahertz frequency range. Companion studies with a conventional membrane hydrophone have illustrated for the first time that cavitation emissions produced by a sonochemical horn processor can extend to frequencies beyond 20 MHz, and the sensor shows that significant nonlinearity can be seen in measured cavitation activity with increasing nominal output power.  相似文献   
3.
This paper deals with the results of indoor radon and thoron concentrations and exposure doses obtained for 63 dwellings out of the 14 rural communities of Central Kosovo, North Kosovo and Prizren region. These research activities are part of overall radiological research that has systematically been carried out since 1986, particularly in Kosovo and Metohija regions. Passive radon/thoron discriminative detectors, exposed for three months, were used. The arithmetic mean concentrations of indoor radon and thoron are CRn = 429 Bq m?3 CTn = 85 Bq m?3.  相似文献   
4.
The acoustic emission from collapsing cavitation bubbles generated using ultrasound of 20 kHz and 515 kHz frequencies in water has been measured and correlated with sonoluminescence and hydroxyl radical production to yield further information on the frequency dependence of sonochemical reactions. A reasonable correlation was found, and the results suggest differences in the predominant types of cavitation observed under laboratory conditions.  相似文献   
5.
This paper describes investigations of the spatial distribution of cavitation activity generated within an ultrasonic cleaning vessel, undertaken using a novel cavitation sensor concept. The new sensor monitors high frequency acoustic emissions (>1 MHz) generated by micron-sized bubbles driven into acoustic cavitation by the applied acoustic field. Novel design features of the sensor, including its hollow, cylindrical shape, provide the sensor with spatial resolution, enabling it to associate the megahertz acoustic emissions produced by the cavitating bubbles with specific regions of space within the vessel. The performance of the new sensor has been tested using a 40 kHz ultrasonic cleaner employing four transducers and operating at a nominal electrical power of 140 W under controlled conditions. The results demonstrate the ability of the sensors to identify 'hot-spots' and 'cold-spots' in cavitation activity within the vessel, and show good qualitative agreement with an assessment of the spatial distribution of cavitation determined through erosion monitoring of thin sheets of aluminium foil. The implications of the studies for the development of reliable methods of quantifying the performance of cleaning vessels are discussed in detail.  相似文献   
6.
The acoustic field produced by a 25 kHz, 25 l cylindrical sonochemical processing cell has been characterised systematically using a sonar hydrophone, with the aim of establishing it as a reference test bed on which future investigations into acoustic cavitation activity may be based. Data acquired at sonication levels up to 500 W have shown that though significant cavitation activity is generated throughout the vessel, the acoustic field generated is reproducible, typically to +/- 12%. The increases in acoustic pressure are shown to be nonlinear with applied power, suggesting an intermediate optimum level for future study.  相似文献   
7.
The effect of adding surface-active solutes to water being insonated at 515 kHz has been investigated by monitoring the acoustic emission from the solutions. At low concentrations (<3 mM), sodium dodecyl sulfate causes marked changes to the acoustic emission spectrum which can be interpreted in terms of preventing bubble coalescence and declustering of bubbles within a cavitating bubble cloud. By conducting experiments in the presence of background electrolytes and also using non-ionic surfactants, the importance of electrostatic effects has been revealed. The results provide further mechanistic evidence for the interpretation of the effect of surface-active solutes on acoustic cavitation and hence on the mechanism of sonochemistry. The work will be valuable to many researchers in allowing them to optimize reaction and process conditions in sonochemical systems.  相似文献   
8.
Progress in developing a new measurement method for ultrasound output power is described. It is a thermal-based technique with the acoustic power generated by a transducer being absorbed within a specially developed polyurethane rubber material, whose high absorption coefficient ensures energy deposition within a few mm of the ultrasonic wave entering the material. The rate of change of temperature at the absorber surface is monitored using the pyroelectric voltage generated from electrodes disposed either side of a 60 mm diameter, 0.061 mm thick membrane of the piezoelectric polymer polyvinylidene fluoride (pvdf) bonded to the absorber. The change in the pyroelectric output voltage generated by the sensor when the transducer is switched ON and OFF is proportional to the delivered ultrasound power. The sensitivity of the device is defined as the magnitude of these switch voltages to a unit input stimulus of power (watt). Three important aspects of the performance of the pyroelectric sensor have been studied. Firstly, measurements have revealed that the temperature dependent sensitivity increases over the range from approximately 20 °C to 30 °C at a rate of +1.6% °C−1. Studies point to the key role that the properties of both the absorbing backing layer and pvdf membrane play in controlling the sensor response. Secondly, the high sensitivity of the technique has been demonstrated using an NPL Pulsed Checksource, a 3.5 MHz focused transducer delivering a nominal acoustic power level of 4 mW. Finally, proof-of-concept of a new type of acoustic sensor responding to time-averaged intensity has been demonstrated, through fabrication of an absorber-backed hydrophone of nominal active element diameter 0.4 mm. A preliminary study using such a device to resolve the spatial distribution of acoustic intensity within plane-piston and focused 3.5 MHz acoustic fields has been completed. Derived beam profiles are compared to conventional techniques that depend on deriving intensity from acoustic pressure measurements made using the sensor as a calibrated hydrophone.  相似文献   
9.
A study is made for the search of superheavy nuclei in Marjalahti, Eagle Station and in other pallasite olivines. The olivine crystals are calibrated for heavy ion track lengths by using heavy ion beams from cyclotrons. The calibration for ultra heavy ions which are presently not available with sufficient energy to produce volume tracks in olivine crystals, is based on Katz and Kobetich model of track formation. The length spectrum of volume tracks, revealed by puncturing them with focussed Nd-glass laser beam, is measured and the abundances of different nuclei groups are calculated. Partial annealing has been used at 430°C for 32 hr which eliminates the interfering tracks due to nuclei of atomic numberS ≤ 50. During the scanning 4 cm3 olivine crystals, about 360 long tracks of uranium group as well as two very long tracks have been found. If these tracks belong to superheavy nuclei, the relative abundance of super heavies is found to be 6 × 10−11 in galactic cosmic rays.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号