首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   1篇
化学   18篇
数学   2篇
物理学   2篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2016年   1篇
  2013年   1篇
  2012年   2篇
  2010年   2篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  1983年   1篇
  1979年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
The solvent reorganization process after electronic excitation of a polar solute in a polar solvent such as acetonitrile is related mainly to the time evolution of the solute-solvent electrostatic interaction. Modern laser-based techniques have sufficient time resolution to follow this decay in real time, providing information to be confirmed and interpreted by theories and models. We present here a study aimed at the investigation of the different steps involved in the process taking place after a vertical S(0) --> S(1) excitation of a large size chromophore, coumarin 153 (C153), in acetonitrile, from both the solute and the solvent points of view. To do this, we use accurate quantum mechanical calculations for the solute properties within the polarizable continuum model (PCM) and classical molecular dynamics (MD) simulations, both equilibrium and nonequilibrium, for C153 in the presence of the solvent. The geometry of the solute is allowed to change in order to study the role of internal motions in the time-dependent solvation process. The solvent response function has been obtained from the simulation data and compared to experiment, while the comparison between equilibrium and nonequilibrium MD results for the solvation response confirms the validity of the linear response approximation in the C153-acetonitrile system. The MD trajectories have also been used to monitor the structure of the solvation shell and to determine its change in response to the change in the solute partial charges.  相似文献   
2.
Molecular dynamics simulations have been carried out to investigate the structure and dynamics of liquid methanol confined in 3.3 nm diameter cylindrical silica pores. Three cavities differing in the characteristics of the functional groups at their walls have been examined: (i) smooth hydrophobic pores in which dispersive forces prevail, (ii) hydrophilic cavities with surfaces covered by polar silanol groups, and (iii) a much more rugged pore in which 60% of the previous interfacial hydroxyl groups were replaced by the bulkier trimethylsilyl ones. Confinement promotes a considerable structure at the vicinity of the pore walls which is enhanced in the case of hydroxylated surfaces. Moreover, in the presence of the trimethylsilyl groups, the propagation of this interface-induced spatial ordering extends down to the central region of the pore. Concerning the dynamical modes, we observed an overall slowdown in both the translational and rotational motions. An analysis of these mobilities from a local perspective shows that the largest retardations operate at the vicinity of the interfaces. The gross features of the rotational dynamics were analyzed in terms of contributions arising from bulk and surface states. Compared to the bulk dynamical behavior, the characteristic timescales associated with the rotational motions show the most dramatic increments. A dynamical analysis of hydrogen bond formation and breaking processes is also included.  相似文献   
3.
Bulky amido ligands are precious in s‐block chemistry, since they can implant complementary strong basic and weak nucleophilic properties within compounds. Recent work has shown the pivotal importance of the base structure with enhancement of basicity and extraordinary regioselectivities possible for cyclic alkali metal magnesiates containing mixed n‐butyl/amido ligand sets. This work advances alkali metal and alkali metal magnesiate chemistry of the bulky arylsilyl amido ligand [N(SiMe3)(Dipp)]? (Dipp=2,6‐iPr2‐C6H3). Infinite chain structures of the parent sodium and potassium amides are disclosed, adding to the few known crystallographically characterised unsolvated s‐block metal amides. Solvation by N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine (PMDETA) or N,N,N′,N′‐tetramethylethylenediamine (TMEDA) gives molecular variants of the lithium and sodium amides; whereas for potassium, PMDETA gives a molecular structure, TMEDA affords a novel, hemi‐solvated infinite chain. Crystal structures of the first magnesiate examples of this amide in [MMg{N(SiMe3)(Dipp)}2(μ‐nBu)] (M=Na or K) are also revealed, though these breakdown to their homometallic components in donor solvents as revealed through NMR and DOSY studies.  相似文献   
4.
This study assessed the diagnostic test accuracy of magnetic resonance imaging (MRI) in the detection of partial- and full-thickness rotator cuff tears in the adult population. A systematic review was conducted of the following electronic databases: Cochrane Central Register of Controlled Trials, Medline, Embase, CINAHL, AMED, ISI Web of Science, Current Controlled Trials, National Technical Information Service, the National Institute for Health Research Portfolio, the UK National Research Register Archive and WHO International Clinical Trials Registry Platform database and reference lists of articles. All studies assessing the sensitivity and/or specificity of MRI for adult patients with suspected rotator cuff tear where surgical procedures were the reference standard were included in the study. A meta-analysis was performed to calculate pooled sensitivity, specificity, likelihood and diagnostic odds ratio values, and summary receiver operating characteristic plots were constructed. Forty-four studies were included. These included 2751 shoulders in 2710 patients. For partial-thickness rotator cuff tears, the pooled sensitivity and specificity values were 0.80 [95% confidence interval (CI): 0.79-0.84] and 0.95 (95% CI: 0.94-0.97), respectively. For full-thickness tears, the sensitivity and specificity values were 0.91 (95% CI: 0.86-0.94) and 0.97 (95% CI: 0.96-0.98), respectively. While there was no substantial difference in diagnostic test accuracy between MRIs reviewed by general radiologists and those reviewed by musculoskeletal radiologists, higher-field-strength (3.0 T) MRI systems provided the greatest diagnostic test accuracy.  相似文献   
5.
We consider the trace reconstruction problem on a tree (TRPT): a binary sequence is broadcast through a tree channel where we allow substitutions, deletions, and insertions; we seek to reconstruct the original sequence from the sequences received at the leaves. The TRPT is motivated by the multiple sequence alignment problem in computational biology. We give a simple recursive procedure giving strong reconstruction guarantees at low mutation rates. To our knowledge, this is the first rigorous trace reconstruction result on a tree in the presence of indels.  相似文献   
6.
A method for the preparation of well‐defined crystallites of MgCl2‐supported Ziegler‐Natta catalysts on Si wafers has been developed. This has been achieved by the spin‐coating of a MgCl2 solution onto a flat Si wafer, followed by controlled crystal growth to give well‐defined MgCl2 · nEtOH crystallites. The growth of the crystallites on the flat silica facilitates their characterization using electron and scanning probe microscopy. The relative proportions of 120° and 90° edge angles indicate the preference for the formation of a particular crystallite face for the MgCl2. Polyethylene has been identified to be formed on the lateral faces of the crystallite.

  相似文献   

7.
Controlling the surface composition of shaped bimetallic nanoparticles could offer precise tunability of geometric and electronic surface structure for new nanocatalysts. To achieve this goal, a platform for studying the intermixing process in a shaped nanoparticle was designed, using multilayered Pd-Ni-Pt core–shell nanocubes as precursors. Under mild conditions, the intermixing between Ni and Pt could be tuned by changing layer thickness and number, triggering intermixing while preserving nanoparticle shape. Intermixing of the two metals is monitored using transmission electron microscopy. The surface structure evolution is characterized using electrochemical methanol oxidation. DFT calculations suggest that the low-temperature mixing is enhanced by shorter diffusion lengths and strain introduced by the layered structure. The platform and insights presented are an advance toward the realization of shape-controlled multimetallic nanoparticles tailored to each potential application.  相似文献   
8.
In this work we have studied the relaxation dynamics of the many-body polarizability anisotropy in liquid mixtures of benzene (Bz) and hexafluorobenzene (Hf) at room temperature by femtosecond optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES) experiments and molecular dynamics (MD) simulations. The computed polarizability response arising from intermolecular interactions was included using the first-order dipole-induced-dipole model with the molecular polarizability distributed over the carbon sites of each molecule. We found good qualitative agreement between experiments and simulations in the features exhibited by the nuclear response function R(t) for pure liquids and mixtures. The long-time diffusive decay of R(t) was observed to vary substantially with composition, slowing down noticeably with dilution of each of the species as compared with that in the corresponding pure liquids. MD simulation shows that the effect on R(t) is due to the formation of strong and localized intermolecular association between Bz and Hf species that hinder the rotational diffusive dynamics. The formation of these Bz-Hf complexes in the liquid mixtures also modifies the rotational diffusive dynamics of the component species in such a way that cannot be explained solely in terms of a viscosity effect. Even though the computed orientational diffusive relaxation times associated with Bz and Hf are larger by a factor of approximately 2 than those from experiments, we found similar trends in experiments and simulations for these characteristic times as a function of composition. Namely, the collective and single-molecule orientational correlation times associated with Bz are observed to grow monotonically with the dilution of Bz, while those corresponding to Hf species exhibit a maximum at the equimolar composition. We attribute the quantitative discrepancy between experiments and simulations to the use of the Williams potential, which seems to overestimate the intermolecular interactions and thus predicts not only a slower translational dynamics but also a slower rotational diffusion dynamics than in real fluids.  相似文献   
9.
A molecular dynamics simulation study is presented for the relaxation of the polarizability anisotropy in liquid mixtures of formamide and water, using a dipolar induction scheme that involves the intrinsic polarizability and first hyperpolarizability tensors of the molecules, and the dipole-quadrupole polarizability of water species. The long time diffusive decay of the collective polarizability anisotropy correlations exhibits a substantial slowing down as the formamide mole fraction increases in the mixture. The diffusive times for the polarizability relaxation obtained from the authors' simulations are in good agreement with optical Kerr effect experimental data, and they are found to correlate nearly linearly with the estimated mean lifetimes of the hydrogen bonds within the mixture, suggesting that the relaxation of the hydrogen bond network is responsible to some extent for the collective relaxation of the polarizability anisotropy of the mixture. The short time behavior of the polarizability anisotropy relaxation was investigated by computing the nuclear response function, R(t), which is very rapidly dominated by the formamide contribution as it is added to water, due to the much larger polarizability anisotropy of formamide molecules compared to that of water. Several contributions to the Raman spectrum were also analyzed as a function of composition, and the dynamical origin of the different bands was determined.  相似文献   
10.
The structure and microscopic dynamics of liquid mixtures of benzene and hexafluorobenzene at room temperature and several compositions have been studied by molecular-dynamics simulations. In this implementation we have rescaled the intermolecular H-F cross potential parameters obtained from the Lorentz-Berthelot combining rules, in order to avoid the substantial overestimation of the energy of mixing predicted by the model when the usual rules are employed. We found that a reduction in the strength of cross H-F interactions by 50% relative to the geometric mean is required in order to get a good agreement with experiments. Radial-angular pair-correlation functions between like and unlike species have been computed and analyzed, by comparing them with the correlations in the corresponding neat liquids. We have also studied the microscopic intermolecular momentum transfer, by computing the time correlation function between the initial velocity of a central molecule and later velocities of neighboring molecules. Structural and dynamical information extracted from the mentioned functions seem to be consistent with the picture of relatively long-lived benzene-hexafluorobenzene (Bz-Hf) complexes present in the mixtures, which would be responsible for the considerable perturbation of the structure in the first shell of like species, and would be moving within the liquid in a parallel face-to-face configuration. Using the tools developed originally to estimate hydrogen-bond lifetimes in liquids, we have computed the lifetimes of the Bz-Hf complexes as a function of the mixture composition, by two different methods: the direct time-averaging scheme and from the autocorrelation function of bond occupation numbers. The obtained lifetimes are strongly dependent on the scheme chosen to compute the characteristic times. We have obtained for the Bz-Hf dimer in solution, at room temperature, lifetimes in the range of 30-40 ps from averaging schemes and around 60-120 ps from autocorrelation function methods. In the latter case, the longest times correspond to the equimolar mixture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号