首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   3篇
物理学   6篇
  2018年   2篇
  2015年   1篇
  2009年   2篇
  2008年   1篇
排序方式: 共有6条查询结果,搜索用时 53 毫秒
1
1.
大模场面积掺镱双包层光纤研究   总被引:1,自引:1,他引:0  
衣永青  黄榜才  宁鼎 《光子学报》2008,37(10):1928-1931
采用改进的化学汽相沉积工艺,沉积了光纤阻挡层和疏松层.结合溶液掺杂技术,研究了疏松层沉积温度、镱铝共掺工艺条件对掺镱浓度的影响,研究了大模场面积纤芯的制备工艺,实现了高浓度大模场面积掺镱双包层光纤的研制.测量并分析了光纤的光学性能参数及其激光特性,光纤芯径达到30 μm,纤芯摻镱浓度提高到4 000 ppm以上,芯数值孔径降至0.07,光纤的模场面积从113 μm2 提高到1 256 μm2,光纤的非线性效应阈值功率由12 W提高到大于128 W.  相似文献   
2.
庞璐  王标  衣永青  潘蓉  刘君  耿鹏程  宁鼎 《强激光与粒子束》2018,30(11):110102-1-110102-3
采用化学气相沉积结合气相/液相复合掺杂方式制备30/600 μm掺镱双包层光纤,石英纤芯中的掺杂组分为Yb2O3, Al2O3,P2O5。基于976 nm发光二极管反向抽运方式,构建全光纤化的主控振荡器功率放大器结构对增益光纤进行测试。实验中,种子源功率为189 W,当泵浦总功率为4747 W时,激光输出功率为4120 W,放大级光光效率为85%,3 dB带宽为1.6 nm。激光器连续工作1 h,激光功率稳定在4100 W,未发生明显的功率衰退现象。  相似文献   
3.
报道了溶液掺杂法制备Er-Yb共掺双包层光纤的技术.采用改进的化学汽相沉积研制工艺,制作了SiO2-P2O5-F的光纤阻挡层和SiO2-GeO2-P2O5的疏松芯层,利用疏松芯层在YbCl3、ErCl3溶液中的浸泡吸收作用,成功研制出Er、Yb离子浓度比分别为1∶13和1∶8两个光纤样品,其中样品2在976 nm泵浦波长处的有效吸收系数最大达到2 dB/m,分析和讨论了光纤的损耗谱和荧光特性.  相似文献   
4.
报道了溶液掺杂法制备Er—Yb共掺双包层光纤的技术.采用改进的化学汽相沉积研制工艺,制作了SiO2-P2O5-F的光纤阻挡层和SiO2-GeO2-P2O5的疏松芯层,利用疏松芯层在YbCl3、ErCl3溶液中的浸泡吸收作用,成功研制出Er、Yb离子浓度比分别为1:13和1:8两个光纤样品。其中样品2在976nm泵浦波长处的有效吸收系数最大达到2dB/m,分析和讨论了光纤的损耗谱和荧光特性.  相似文献   
5.
国产光纤实现同带抽运3000W激光输出   总被引:2,自引:0,他引:2       下载免费PDF全文
同带抽运是目前实现高功率光纤激光器的有效手段.本文基于同带抽运方式,以国产25/250μm掺镱双包层光纤为增益光纤,构建了全光纤化的主控振荡器功率放大器.实验中采用的国产光纤是中国电子科技集团公司第四十六研究所采用化学气相沉积结合气相-液相复合掺杂工艺制备的,其Yb~(3+)离子的分布更均匀,吸收截面更大,吸收系数更高.实验中,在种子光功率为67.8 W、抽运总功率为3511 W的条件下,实现了3079 W的激光输出,斜效率为85.9%,光束质量M~2约为2.14,3dB带宽为1.4nm,这是目前基于国产光纤同带抽运方式实现的最高功率.理论和实验结果表明国产光纤制备技术不断成熟,已经具备承受高功率输出的能力.继续提高抽运功率,优化增益光纤长度,改良散热方式,国产光纤有望实现更高功率的激光输出.  相似文献   
6.
王雪娇  肖起榕  闫平  陈霄  李丹  杜城  莫琦  衣永青  潘蓉  巩马理 《物理学报》2015,64(16):164204-164204
基于国产光纤构建了直接抽运全光纤化主控振荡器功率放大器结构光纤激光器, 放大级分别采用武汉烽火锐光科技有限公司和中国电子科技集团公司第四十六研究所提供的国产20/400 μm掺镱双包层光纤作为增益光纤, 通过全国产化放大级实现了3050和3092 W的1080 nm激光输出. 放大级提取效率分别为67.3%和68.2%, 光-光效率分别为63.0%和63.9%. 据可查询资料, 这是公开报道的直接抽运全光纤激光输出的最高水平, 同时由于采用了国产光纤作为放大级增益光纤, 表明国产光纤具备了3 kW级光纤激光器输出能力. 通过国产光纤横截端面以及光纤熔接显微镜图像实验分析知, 光纤制造工艺的不足是导致国产光纤激光器效率低的主要原因. 继续改进光纤工艺, 提升抽运功率, 优化光纤长度, 有望实现更高功率的全国产化光纤激光器输出.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号