首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   3篇
物理学   3篇
  2014年   1篇
  2013年   2篇
排序方式: 共有3条查询结果,搜索用时 93 毫秒
1
1.
In this paper, spectral hole depth dependence on temperature below 10 K in Tm^3+ :YAG crystal is investigated in detail. A novel model is proposed to analyze the temperature dependence on the spectral hole. By using the proposed model, we theoretically deduce the temperature dependence of spectral hole depth. The results are compared with experimental results and they are in good agreement. According to the theoretic results, the optimum temperature in experiment can be found.  相似文献   
2.
In this paper, the physical mechanism of the interaction between electromagnetic wave and spectral-hole burning crystal material is investigated in detail. In the small signal regime, a perturbation theory model is used to analyze the mechanism of spectral-hole burning. By solving the Liouville equation, three-order perturbation results are obtained. From the theoretic analysis, spectral-hole burning can be interpreted as a photon echo of the zero-order diffraction echo when the first optical pulse and the second optical pulse are overlapped in time. According to the model, the spectral-hole width is dependent on the chirp rate of the reading laser. When the chirp rate is slow with respect to the spectral features of interest,the spectral hole is closely mapped into time domain. For a fast chirp rate, distortions are observed. The results follow Maxwell–Bloch model and they are also in good agreement with the experimental results.  相似文献   
3.
In this paper, spectral hole depth dependence on temperature below 10 K in Tm3+:YAG crystal is investigated in detail. A novel model is proposed to analyze the temperature dependence on spectral hole. By using the proposed model, we theoretically deduce the temperature dependence of spectral hole depth. The results are compared with experimental results and they are in good agreement. According to the theoretic results, the optimum temperature in experiment can be found.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号