首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
物理学   2篇
  2020年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Ghost imaging(GI) offers great potential with respect to conventional imaging techniques. It is an open problem in GI systems that a long acquisition time is be required for reconstructing images with good visibility and signal-to-noise ratios(SNRs). In this paper, we propose a new scheme to get good performance with a shorter construction time. We call it correspondence normalized ghost imaging based on compressive sensing(CCNGI). In the scheme, we enhance the signal-to-noise performance by normalizing the reference beam intensity to eliminate the noise caused by laser power fluctuations, and reduce the reconstruction time by using both compressive sensing(CS) and time-correspondence imaging(CI) techniques. It is shown that the qualities of the images have been improved and the reconstruction time has been reduced using CCNGI scheme. For the two-grayscale "double-slit" image, the mean square error(MSE) by GI and the normalized GI(NGI) schemes with the measurement number of 5000 are 0.237 and 0.164, respectively, and that is 0.021by CCNGI scheme with 2500 measurements. For the eight-grayscale "lena" object, the peak signal-to-noise rates(PSNRs)are 10.506 and 13.098, respectively using GI and NGI schemes while the value turns to 16.198 using CCNGI scheme. The results also show that a high-fidelity GI reconstruction has been achieved using only 44% of the number of measurements corresponding to the Nyquist limit for the two-grayscale "double-slit" object. The qualities of the reconstructed images using CCNGI are almost the same as those from GI via sparsity constraints(GISC) with a shorter reconstruction time.  相似文献   
2.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号