首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
物理学   2篇
  2005年   1篇
  2003年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The master equation for the cluster-size distribution function is solved numericafly to investigate the electron-hole droplet formation claimed to be discovered in the direct-gap CuCl excited by picosecond laser pulses [Nagai et al. Phys. Rev. Lett. 86 (2001)5795; J. Lumin. 100 (2002)233]. Our result shows that for the excitation in the experiment, the average number of pairs per cluster (ANPC) is only around 5.2, much smaller than that (10^6 typically for Ge) of the well studied electron-hole droplet in indirect-gap semiconductors such as Ge and Si.These results indicate that what measured in CuCl by Nagai et al. may not come from the EHD formed from exciton gas, instead possibly come from some bubbles of excitons in metallic liquid.  相似文献   
2.
By constructing and numerically solving the kinetic Bloch equations we perform a many-body study of the spin dephasing due to the D‘yakonov-Perel‘ effect in n-type GaAs (100) quantum wells for high temperatures. In our study, we include the spin-conserving scattering such as the electron-phonon, the electron-nonmagnetic impurity as well as the electron-electron Coulomb scattering into consideration. The dephasing obtained from our theory contains both the single-particle and the many-body contributions with the latter originating from the inhomogeneous broadening introduced by the DP term [J. Supercond.: Incorp. Novel Magn. 14 (2001) 245; Eur. Phys. J. B 18 (2000) 373]. Our result agrees very well with the experimental data [Phys. Rev. B 62 (2000) 13034] of Malinowski et al. We further show that in the case we study, the spin dephasing is dominated by the many-body effect.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号