首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   3篇
物理学   3篇
  2022年   1篇
  2018年   1篇
  2017年   1篇
排序方式: 共有3条查询结果,搜索用时 203 毫秒
1
1.
Nasicon materials(sodium superionic conductors) such as Li_(1.5)Al_(0.5)Ge_(1.5)(PO_4)_3(LAGP) and Li_(1.4)Al_(0.4)Ti_(1.6)(PO_4)_3(LATP) have been considered as important solid electrolytes due to their high ionic conductivity and chemical stability.Compared to LAGP, LATP has higher bulk conductivity around 10~(-3) S/cm at room temperature; however, the apparent grain boundary conductivity is almost two orders of magnitude lower than the bulk, while LAGP has similar bulk and grain boundary conductivity around the order of 10~(-4) S/cm. To make full use of the advantages of the two electrolytes, pure phase Li_(1.5)Al_(0.5)Ge_(1.5)(PO_4)_3 and Li_(1.4)Al_(0.4)Ti_(1.6)(PO_4)_3 were synthesized through solid state reaction, a series of composite electrolytes consisting of LAGP and LATP with different weight ratios were designed. XRD and variable temperature AC impedance spectra were carried out to clarify the crystal structure and the ion transport properties of the composite electrolytes. The results indicate that the composite electrolyte with the LATP/LAGP weight ratio of 80:20 achieved the highest bulk conductivity which shall be due to the formation of solid solution phase Li1.42 Al0.42 Ge0.3 Ti1.28(PO4)3, while the highest grain boundary conductivity appeared at the LATP/LAGP weight ratio of 20:80 which may be due to the excellent interfacial phase between Li_(1+x)Al_xGe_yTi_(2-x-y)(PO_4)_3/LATP. All the composite electrolytes demonstrated higher total conductivity than the pure LAGP and LATP, which highlights the importance of heterogeneous interface on regulating the ion transport properties.  相似文献   
2.
The composite quasi solid state electrolytes(CQSE) is firstly synthesized with quasi solid state electrolytes(QSE) and lithium-ion-conducting material Li_(1.4)Al_(0.4)Ti_(1.6)(PO_4)_3(LATP), and the QSE consists of [LiG4][TFSI] with fumed silica nanoparticles. Compared with LATP, CQSE greatly improves the interface conductance of solid electrolytes. In addition,it has lower liquid volume relative to QSE. Although the liquid volume fraction of CQSE is droped to 60%, its conductivity can also reach 1.39 × 10~(-4)S/cm at 20℃. Linear sweep voltammetry(LSV) is conducted on each composite electrolyte.The results show the possibility that CQSE has superior electrochemical stability up to 5.0 V versus Li/Li+. TG curves also show that composite electrolytes have higher thermal stability. In addition, the performance of Li/QSE/Li Mn_2O_4 and Li/CQSE/Li Mn_2O_4 batteries is evaluated and shows good electrochemical characteristics at 60℃.  相似文献   
3.
Yue Chen 《中国物理 B》2022,31(7):78201-078201
Silicon-graphite (Si-Gr) composite anodes are attractive alternatives to replace Gr anodes for lithium-ion batteries (LIBs) owing to their relatively high capacity and mild volume change. However, it is difficult to understand electrochemical interactions of Si and Gr in Si-Gr composite anodes and internal polarization of LIBs with regular experiment methods. Herein, we establish an electrochemical-mechanical coupled model to study the effect of rate and Si content on the electrochemical and stress behavior in a Si-Gr composite anode. The results show that the composites of Si and Gr not only improve the lithiation kinetics of Gr but also alleviate the voltage hysteresis of Si and decrease the risk of lithium plating in the negative electrode. What's more, the Si content is a tradeoff between electrode capacity and electrode volume variation. Further, various internal polarization contributions of cells using Si-Gr composite anodes are quantified by the voltage decomposition method. The results indicate that the electrochemical polarization of electrode materials and the electrolyte ohmic over-potential are dominant factors in the rate performance of cells, which provides theoretical guidance for improving the rate performance of LIBs using Si-Gr composite anodes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号