首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
物理学   2篇
  2018年   2篇
排序方式: 共有2条查询结果,搜索用时 4 毫秒
1
1.
Impurity segregation at grain boundary(GB) can significantly affect the mechanical behaviors of polycrystalline metal. The effect of nickel impurity segregated at Cu GB on the deformation mechanism relating to loading direction is comprehensively studied by atomic simulation. The atomic structures and shear responses of Cu Σ9(114) 110 and Σ9(221) 110 symmetrical tilt grain boundary with different quantities of nickel segregation are analyzed. The results show that multiple accommodative evolutions involving GB gliding, GB shear-coupling migration, and dislocation gliding can be at play, where for the 2ˉ21ˉ shear of Σ9(114) 110 the segregated GBs tend to maintain their initial configurations and a segregated GB with a higher impurity concentration is more inclined to be a dislocation emission source while maintaining the high mechanical strength undergone plastic deformation for the 11ˉ4ˉ shear of Σ9(221) 110. It is found that the nickel segregated GB exerts a cohesion enhancement effect on Cu under deformation: strong nickel segregation increases the work of separation of GB, which is proved by the first-principles calculations.  相似文献   
2.
The lattice dislocation interacting with grain boundary in the polycrystal exerts an evident influence on the materials' strength and toughness. A comprehensive study regarding the dislocation-twinning boundary(TB)interaction in a-titanium and TB migration is performed by employing molecular dynamic simulation. We analyze the interactions between dislocation and TB, under the conditions of plastic deformation and thermal stress, including the interaction between pure edge(a) dislocation and(1122) TB and the interaction between mixed type(a) dislocations and(1011) TB at 10 K/300 K. The(c + a) pyramidal transmitting slip mode is motivated in the case of edge dislocation-(1122) interaction at 300 K and then transforms into basal-dissociated dislocation after experiencing the complex dissociation and combination. The basal-dissociated pyramidal partial dislocation located in the second grain can be driven to penetrate through the second grain leaving the multiple stacking faults behind. Dissociation of incident basal dislocation on(1011) TB results in a nucleation of a(1011)twin embryo in twin crystals at room temperature. We determine the nature of the generated defects by means of the Burgers circuit analysis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号