首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
数学   1篇
  2023年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
In modern short-pulse fiber lasers, there is significant pulse breathing over each round trip of the laser loop. Consequently, averaged models cannot be used for quantitative modeling and design. Instead, lumped models, which are obtained by concatenating models for the various components of the laser, are required. As the pulses in lumped models are periodic rather than stationary, their linear stability is evaluated with the aid of the monodromy operator obtained by linearizing the round-trip operator about the periodic pulse. Conditions are given on the smoothness and decay of the periodic pulse that ensure that the monodromy operator exists on an appropriate Lebesgue function space. A formula for the essential spectrum of the monodromy operator is given, which can be used to quantify the growth rate of continuous wave perturbations. This formula is established by showing that the essential spectrum of the monodromy operator equals that of an associated asymptotic operator. Since the asymptotic monodromy operator acts as a multiplication operator in the Fourier domain, it is possible to derive a formula for its spectrum. Although the main results are stated for a particular experimental stretched pulse laser, the analysis shows that they can be readily adapted to a wide range of lumped laser models.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号