首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
数学   4篇
  2020年   3篇
  2015年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Mathematization is critical in providing students with challenges for solving modelling tasks. Inadequate assumptions in a modelling task lead to an inadequate situational model, and to an inadequate mathematical model for the problem situation. However, the role of assumptions in solving modelling problems has been investigated only rarely. In this study, we intentionally designed two types of assumptions in two modelling tasks, namely, one task that requires non-numerical assumptions only and another that requires both non-numerical and numerical assumptions. Moreover, conceptual knowledge and procedural knowledge are also two factors influencing students’ modelling performance. However, current studies comparing modelling performance between Western and non-Western students do not consider the differences in students’ knowledge. This gap in research intrigued us and prompted us to investigate whether Taiwanese students can still perform better than German students if students’ mathematical knowledge in solving modelling tasks is differentiated. The results of our study showed that the Taiwanese students had significantly higher mathematical knowledge than did the German students with regard to either conceptual knowledge or procedural knowledge. However, if students of both countries were on the same level of mathematical knowledge, the German students were found to have higher modelling performance compared to the Taiwanese students in solving the same modelling tasks, whether such tasks required non-numerical assumptions only, or both non-numerical and numerical assumptions. This study provides evidence that making assumptions is a strength of German students compared to Taiwanese students. Our findings imply that Western mathematics education may be more effective in improving students’ ability to solve holistic modelling problems.  相似文献   
2.
Verschaffel  Lieven  Schukajlow  Stanislaw  Star  Jon  Van Dooren  Wim 《ZDM》2020,52(1):1-16

Word problems are among the most difficult kinds of problems that mathematics learners encounter. Perhaps as a result, they have been the object of a tremendous amount research over the past 50 years. This opening article gives an overview of the research literature on word problem solving, by pointing to a number of major topics, questions, and debates that have dominated the field. After a short introduction, we begin with research that has conceived word problems primarily as problems of comprehension, and we describe the various ways in which this complex comprehension process has been conceived theoretically as well as the empirical evidence supporting different theoretical models. Next we review research that has focused on strategies for actually solving the word problem. Strengths and weaknesses of informal and formal solution strategies—at various levels of learners’ mathematical development (i.e., arithmetic, algebra)—are discussed. Fourth, we address research that thinks of word problems as exercises in complex problem solving, requiring the use of cognitive strategies (heuristics) as well as metacognitive (or self-regulatory) strategies. The fifth section concerns the role of graphical representations in word problem solving. The complex and sometimes surprising results of research on representations—both self-made and externally provided ones—are summarized and discussed. As in many other domains of mathematics learning, word problem solving performance has been shown to be significantly associated with a number of general cognitive resources such as working memory capacity and inhibitory skills. Research focusing on the role of these general cognitive resources is reviewed afterwards. The seventh section discusses research that analyzes the complex relationship between (traditional) word problems and (genuine) mathematical modeling tasks. Generally, this research points to the gap between the artificial word problems learners encounter in their mathematics lessons, on the one hand, and the authentic mathematical modeling situations with which they are confronted in real life, on the other hand. Finally, we review research on the impact of three important elements of the teaching/learning environment on the development of learners’ word problem solving competence: textbooks, software, and teachers. It is shown how each of these three environmental elements may support or hinder the development of learners’ word problem solving competence. With this general overview of international research on the various perspectives on this complex and fascinating kind of mathematical problem, we set the scene for the empirical contributions on word problems that appear in this special issue.

  相似文献   
3.
We report on the construction, validation, and implementation of an instrument for measuring students’ strategic knowledge about drawing for geometry modelling problems, namely, the strategic knowledge about drawing scale. We conducted a qualitative study and a quantitative study to validate the proposed construction and interpretation of the scale and to obtain initial findings on students’ strategic knowledge about drawing. Results showed that ninth-grade students in the intermediate achievement track had less elaborated strategic knowledge about drawing than their peers in the high achievement track. Further, strategic knowledge about drawing was found to be related to drawing accuracy and modelling performance even when cognitive abilities and interest were controlled for. The current study suggests that promoting strategic knowledge about drawing might be a means to increase drawing and modelling performance—especially among non-high-achieving students.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号