首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
化学   8篇
数学   8篇
  2021年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2003年   1篇
  2001年   1篇
  1981年   1篇
  1979年   1篇
  1975年   1篇
  1968年   1篇
  1965年   2篇
  1961年   1篇
  1928年   1篇
排序方式: 共有16条查询结果,搜索用时 78 毫秒
1.
Chronic neuropathic pain, particularly peripheral pain, is a cause of great concern for diabetic patients. Current treatments include numerous agents such as capsaicinoids, a known deterrent of neuropathic pain despite the inconvenience associated with local side effects. In this context, the current work aims to elucidate the potential mechanisms involved in cytotoxicity by capsaicin and proposes an efficient formulation of capsaicin in alginate microcapsules, which significantly reduces side effects from capsaicin topical administration. For this, human dermal fibroblast cells were treated with alginate-microencapsulated capsaicin extracts and screened for potential cytotoxic effects produced by the treatment. Cell viability and morphology were examined, as well as oxidative stress status and anti-inflammatory potential. Our results show that the alginate encapsulated formulation of capsaicin exerted lower cytotoxic effects on human dermal fibroblasts as measured by cell viability and reactive oxygen species (ROS) production. Furthermore, the expression profiles of inflammatory cytokines were significantly altered by the treatment as compared with the control culture.  相似文献   
2.
We have tried to calculate the free energy for the binding of six small ligands to two variants of the octa-acid deep cavitand host in the SAMPL5 blind challenge. We employed structures minimised with dispersion-corrected density-functional theory with small basis sets and energies were calculated using large basis sets. Solvation energies were calculated with continuum methods and thermostatistical corrections were obtained from frequencies calculated at the HF-3c level. Care was taken to minimise the effects of the flexibility of the host by keeping the complexes as symmetric and similar as possible. In some calculations, the large net charge of the host was reduced by removing the propionate and benzoate groups. In addition, the effect of a restricted molecular dynamics sampling of structures was tested. Finally, we tried to improve the energies by using the DLPNO–CCSD(T) approach. Unfortunately, results of quite poor quality were obtained, with no correlation to the experimental data, systematically too positive affinities (by ~50 kJ/mol) and a mean absolute error (after removal of the systematic error) of 11–16 kJ/mol. DLPNO–CCSD(T) did not improve the results, so the accuracy is not limited by the energy function. Instead, four likely sources of errors were identified: first, the minimised structures were often incorrect, owing to the omission of explicit solvent. They could be partly improved by performing the minimisations in a continuum solvent with four water molecules around the charged groups of the ligands. Second, some ligands could bind in several different conformations, requiring sampling of reasonable structures. Third, there is an indication the continuum-solvation model has problems to accurately describe the binding of both the negatively and positively charged guest molecules. Fourth, different methods to calculate the thermostatistical corrections gave results that differed by up to 30 kJ/mol and there is an indication that HF-3c overestimates the entropy term. In conclusion, it is a challenge to calculate binding affinities for this octa-acid system with quantum–mechanical methods.  相似文献   
3.
4.
We have estimated free energies for the binding of eight carboxylate ligands to two variants of the octa-acid deep-cavity host in the SAMPL6 blind-test challenge (with or without endo methyl groups on the four upper-rim benzoate groups, OAM and OAH, respectively). We employed free-energy perturbation (FEP) for relative binding energies at the molecular mechanics (MM) and the combined quantum mechanical (QM) and MM (QM/MM) levels, the latter obtained with the reference-potential approach with QM/MM sampling for the MM → QM/MM FEP. The semiempirical QM method PM6-DH+ was employed for the ligand in the latter calculations. Moreover, binding free energies were also estimated from QM/MM optimised structures, combined with COSMO-RS estimates of the solvation energy and thermostatistical corrections from MM frequencies. They were performed at the PM6-DH+ level of theory with the full host and guest molecule in the QM system (and also four water molecules in the geometry optimisations) for 10–20 snapshots from molecular dynamics simulations of the complex. Finally, the structure with the lowest free energy was recalculated using the dispersion-corrected density-functional theory method TPSS-D3, for both the structure and the energy. The two FEP approaches gave similar results (PM6-DH+/MM slightly better for OAM), which were among the five submissions with the best performance in the challenge and gave the best results without any fit to data from the SAMPL5 challenge, with mean absolute deviations (MAD) of 2.4–5.2 kJ/mol and a correlation coefficient (R2) of 0.77–0.93. This is the first time QM/MM approaches give binding free energies that are competitive to those obtained with MM for the octa-acid host. The QM/MM-optimised structures gave somewhat worse performance (MAD?=?3–8 kJ/mol and R2?=?0.1–0.9), but the results were improved compared to previous studies of this system with similar methods.  相似文献   
5.
We have estimated the binding affinity of three sets of ligands of the heat-shock protein 90 in the D3R grand challenge blind test competition. We have employed four different methods, based on five different crystal structures: first, we docked the ligands to the proteins with induced-fit docking with the Glide software and calculated binding affinities with three energy functions. Second, the docked structures were minimised in a continuum solvent and binding affinities were calculated with the MM/GBSA method (molecular mechanics combined with generalised Born and solvent-accessible surface area solvation). Third, the docked structures were re-optimised by combined quantum mechanics and molecular mechanics (QM/MM) calculations. Then, interaction energies were calculated with quantum mechanical calculations employing 970–1160 atoms in a continuum solvent, combined with energy corrections for dispersion, zero-point energy and entropy, ligand distortion, ligand solvation, and an increase of the basis set to quadruple-zeta quality. Fourth, relative binding affinities were estimated by free-energy simulations, using the multi-state Bennett acceptance-ratio approach. Unfortunately, the results were varying and rather poor, with only one calculation giving a correlation to the experimental affinities larger than 0.7, and with no consistent difference in the quality of the predictions from the various methods. For one set of ligands, the results could be strongly improved (after experimental data were revealed) if it was recognised that one of the ligands displaced one or two water molecules. For the other two sets, the problem is probably that the ligands bind in different modes than in the crystal structures employed or that the conformation of the ligand-binding site or the whole protein changes.  相似文献   
6.
We obtain rigidity and gluing results for the Morse complex of a real-valued Morse function as well as for the Novikov complex of a circle-valued Morse function. A rigidity result is also proved for the Floer complex of a hamiltonian defined on a closed symplectic manifold (M,) with c1|2(M)=[]|2(M)=0. The rigidity results for these complexes show that the complex of a fixed generic function/hamiltonian is a retract of the Morse (respectively Novikov or Floer) complex of any other sufficiently C0 close generic function/hamiltonian. The gluing result is a type of Mayer-Vietoris formula for the Morse complex. It is used to express algebraically the Novikov complex up to isomorphism in terms of the Morse complex of a fundamental domain. Morse cobordisms are used to compare various Morse-type complexes without the need of bifurcation theory.  相似文献   
7.
8.
9.
Résumé L'examen préalable des concepts mathématiques indispensables aux énoncés des Axiomes de la Mécanique fait partie integrante de ces énoncés. Le concepts qui interviennent ce sont d'abord ceux concernant certains espaces ponctuels ou vectoriels euclidiens et les produits cartésiens qui en sont constitués, en suite ceux rélatifs aux formes linéaires ou bilinéaires attachées à ces espaces. Après avoir définit la série d'espaces et de formes qui sont nécessaires pour constituer la Mécanique inertiale du point, nous devons passer à la Mécanique du point dans un champ. Pour y parvenir nous devons dotér d'abord l'espace R de la metrique qui s'impose et en constituer ainsi l'univers deEinstein-Minkowski. Avec R comme base, nous formons un espace fibré qui est le siège du champ de vecteurs deMaxwell et ensuite un second espace, fibré par un espace de tenseurs, qui nous donne les champs non holonomes des mésons et d'autres champs dont l'interprétation reste encore à être donnée. A M. Enrico Bompiani pour son Jubilé scientifique.  相似文献   
10.
Polynomial approximation results on unbounded subsets of \(R^n\) are discussed. By applying these results, one obtains characterizations of the existence of the solutions of the multidimensional vector valued moment problems in terms of quadratic mappings. Two other applications related to the Markov moment problem are considered. The main ingredients of the proofs are the extension of linear operator’s results, with two constraints. All sections contain statements using Hahn–Banach principle or its generalizations, as well as natural order relations on function or operator spaces. One solves the difficulty created by the existence of positive polynomials that are not sums of squares in several dimensions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号