首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   10篇
化学   255篇
力学   1篇
数学   10篇
物理学   26篇
  2024年   1篇
  2022年   3篇
  2021年   16篇
  2020年   6篇
  2019年   10篇
  2018年   15篇
  2017年   7篇
  2016年   16篇
  2015年   10篇
  2014年   7篇
  2013年   22篇
  2012年   17篇
  2011年   16篇
  2010年   16篇
  2009年   14篇
  2008年   16篇
  2007年   13篇
  2006年   11篇
  2005年   19篇
  2004年   11篇
  2003年   8篇
  2002年   8篇
  2001年   4篇
  2000年   7篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1992年   1篇
  1991年   1篇
排序方式: 共有292条查询结果,搜索用时 20 毫秒
1.
[reaction: see text] Two easy-to-synthesize polypyrrolic 2,5-diamidothiophene Schiff base macrocycles are reported, along with their anion binding properties as determined via UV-vis spectroscopic titrations carried out in dichloroethane. There is a striking difference between the interactions with anions of the two macrocycles, a finding ascribed to differences in their rigidity. For example, the more flexible dipyrromethane-derived macrocycle displays a 1.2:1 hydrogen sulfate versus nitrate selectivity, while its more rigid bipyrrole-derived congener shows a 7.4:1 selectivity in favor to hydrogen sulfate.  相似文献   
2.
3.
The kinetics of the dibutyltin dilaurate (DBTDL)‐catalyzed urethane formation reactions of cyclohexyl isocyanate (CHI) with model monofunctional fluorinated alcohols and fluoropolyether diol Z‐DOL H‐1000 of various molecular weights (100–1084 g mol?1) in different solvents were studied. IR spectroscopy and chemical titration methods were used for measuring the rate of the total NCO disappearance at 30–60 °C. The effects of the reagents and DBTDL catalyst concentrations, the solvent and hydroxyl‐containing compound nature, and the temperature on the reaction rate and mechanism were investigated. Depending on the initial reagent concentration and solvent, the reactions could be well described by zero‐order, first‐order, second‐order, or more complex equations. The reaction mechanism, including the formation of intermediate ternary or binary complexes of reagents with the tin catalyst, could vary with the concentration and solvent and even during the reaction. The results were treated with a rate expression analogous to those used for enzymatic reactions. Under the explored conditions, the rate of the uncatalyzed reaction of fluorinated alcohols with CHI was negligible. Moreover, there was no allophanate formation, nor were there other side reactions, catalysis by urethane in the absence of DBTDL, or a synergetic effect in the presence of the tin catalyst. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3771–3795, 2002  相似文献   
4.
Thermolysis of tetranuclear palladium clusters Pd4(-Q)4 Pd4(-Q)4(-O2CR)4 (Q=CPh2 or CO;R=Me, CMe3, Ph, CH2Cl or CF3) has been found to involve innersphere oxidation of carbene or carbonyl ligands during which an oxygen atom transfer occurs from the carboxylate group to the carbene or carbonyl ligand. The thermolysis of the carbonyl clusters gives rise to the products of CO2 insertion into the C–H bond of benzene or toluene used as solvents forming benzoic acid from benzene and a mixture of phenylacetic and toluic acids from toluene. The reaction of [Pd(OAc)2(PPh3)]2 with HCO2H includes the transfer of an O atom from formate ligand to the P atom and cleavage of the P-Ph bond accompanied by transfer of the Ph group from PPh3 ligand to the palladium atom. The structure of the complex formed, [Pd(-O2PPh2)(C6H5)(PPh3)]2, has been resolved by X-ray analysis.  相似文献   
5.
Application of linear free energy relationships (correlation between kinetics and thermodynamics) to catalytic hydrogenation of aromatic compounds in the liquidphase over supported metal catalysts is discussed.  相似文献   
6.
The reaction of 5,7‐diphenyl‐4,7‐dihydro‐1,2,4‐triazolo[1,5‐a]pyrimidine ( 1 ) with α,β‐unsaturated carbonyl compounds 2a‐f led to the formation of the alkylated heterocycles 3a‐f (Figure 1). However, the reaction of 5‐methyl‐7‐phenyl‐4,7‐dihydro‐1,2,4‐triazolo[1,5‐a]pyrimidine ( 5 ) with 2a‐c yielded under the same conditions the triazolo[5,1‐b]quinazolines 6a‐c (Figure 3). In this case, the alkylation is followed by a cyclocondensation. The structure elucidation of the products is based on ir, ms, 1H and 13C nmr measurements and on an X‐ray diffraction study.  相似文献   
7.
The polymorphic study of 3‐(3‐phenyl‐1H‐1,2,4‐triazol‐5‐yl)‐2H‐1‐benzopyran‐2‐one, C17H11N3O2, was performed due to its potential biological activity and revealed three polymorphic modifications in the triclinic space group P, the monoclinic space group P21 and the orthorhombic space group Pbca. These polymorphs have a one‐column layered type of crystal organization. The strongest interactions between the molecules of the studied structures is stacking between π‐systems, while N—H…N and C—H…O hydrogen bonds link stacked columns forming layers as a secondary basic structural motif. C—H…π hydrogen bonds were observed between neighbouring layers and their role is the least significant in the formation of the crystal structure. Packing differences between the polymorphic modifications are minor and can be identified only using an analysis based on a comparison of the pairwise interaction energies.  相似文献   
8.
The title complex, [CuCl(C4H8OS)]n, contains infinite spiral (CuS)n chains linked by bridging Cl atoms into layers. The Cl atoms do not form polymeric fragments with CuI, but combine into isolated centrosymmetric Cu2Cl2 units. The compound is non‐isomorphous with the Br‐containing analogue, which contains Cu8S8 rings linked by Br atoms into chains. The O atom of the 1,4‐oxathiane mol­ecule does not realize its coordination abilities in the known copper(I)–halide complexes, while in copper(II)–halide complexes, oxathiane is coordinated via the S and O atoms. This falls into a pattern of the preferred inter­actions, viz. weak acid (CuI atom) with weak base (S atom) and harder acid (CuII atom) with harder base (O atom).  相似文献   
9.
Analogous to the formation of CH(2)[(t-Bu)(2)C(6)H(2)O](2)P(Ph)(O(2)C(6)Cl(4)) (1), the new bicyclic tetraoxyphosphoranes CH(2)[(t-Bu)(2)C(6)H(2)O](2)P(Et)(O(2)C(6)Cl(4)) (3) and CH(2)[ClC(6)H(3)O](2)P(Ph)(O(2)C(6)Cl(4)) (4) were synthesized by the oxidative addition of the appropriate cyclic phosphines with o-tetrachlorobenzoquinone. For the formation of CH(2)[(t-Bu)(2)C(6)H(2)O](2)P(Ph)(O(2)C(2)Ph(2)) (2), a similar reaction was followed with the use of benzil (PhCOCOPh) in place of o-tetrachlorobenzoquinone. X-ray analysis of 1-3 revealed trigonal bipyramidal geometries and provided evidence for the first series of complexes in the absence of ring strain in which the least electronegative group, ethyl or phenyl, is located in an axial position, in violation of the electronegativity rule. Thus, the two oxygen-containing ring systems occupied two different sets of positions in the trigonal bipyramid (TBP) with the eight-membered rings at diequatorial sites. X-ray analysis of 4 revealed a trigonal bipyramidal geometry with electron-withdrawing chlorine substituents on each ring assumed the more conventional geometry with the rings occupying axial-equatorial positions and the phenyl group located in the remaining equatorial site. The fact that molecular mechanics calculations favorably reproduced the observed geometries suggests that a steric contribution associated with the ring tert-butyl groups for 1-3 is partly responsible in favoring diequatorial ring occupancy for the eight-membered ring. NMR data supported rigid pentacoordinated structures in solution at 23 degrees C. Phosphorane 1 crystallizes in the orthorhombic space group Fdd2 with a = 44.787(5) ?, b = 34.648(8) ?, c = 10.3709(9) ?, and Z = 16. Phosphorane 2 crystallizes in the orthorhombic space group Pna2(1) with a = 20.658(8) ?, b = 10.342(2) ?, c = 19.879(6) ?, and Z = 4. Phosphorane 3 crystallizes in the orthorhombic space group Pcmn with a = 9.807(2) ?, b = 16.632(4) ?, c = 23.355(3) ?, and Z = 4. Phosphorane 4 crystallizes in the monoclinic space group C2/c with a = 35.699(5) ?, b = 12.187(2) ?, c = 14.284(3) ?, beta = 107.08(1) degrees, and Z = 8. The final conventional unweighted residuals are 0.0395 (1), 0.0518 (2), 0.0540 (3), and 0.0868 (4).  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号